论文阅读笔记一:SESSION-BASED RECOMMENDATIONS WITHRECURRENT NEURAL NETWORKS

论文《SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS》介绍了如何使用RNN(特别是GRU)解决仅基于会话数据的推荐问题。传统方法如矩阵分解在短会话数据中表现不佳,而GRU4REC模型通过会话并行小批量和输出采样等策略改进训练,展示了在RecSys Challenge 2015和YouTube OTT数据集上的优越性能。
摘要由CSDN通过智能技术生成

目录

一 论文简介

       1.1 论文名称:SESSION-BASED RECOMMENDATIONS WITHRECURRENT NEURAL NETWORKS(基于RNN神经网络的会话推荐)

       1.2 作者:Balázs Hidasi 

       1.3 发布地址:Published as a conference paper at ICLR 2016

 二  论文摘要与介绍

      2.1 摘要:

     2.2  介绍:

三   GRU

四 GRU4REC框架

五 提升训练的策略

    5.1 SESSION-PARALLEL MINI-BATCHES(会话并行小批量)

    5.2  SAMPLING ON THE OUTPUT(对输出进行采样)

六 排名损失(RANKING LOSS) 

 七 实验部分

 八 总结

一 论文简介

       1.1 论文名称:SESSION-BASED RECOMMENDATIONS WITHRECURRENT NEURAL NETWORKS(基于RNN神经网络的会话推荐)

       1.2 作者:Balázs Hidasi 

       1.3 发布地址:Published as a conference paper at ICLR 2016

     

 二  论文摘要与介绍

2.1 先来看看是什么是会话推荐

      会话:是在一个事件(例如,事务)中或在某一时间段内收集或使用的一组项(例如,指任何对象,例如,产品、歌曲或电影),或在一个时间段(例如,一小时)内发生的一组动作或事件(例如,听一首歌)。                                                                                                                              例如,在一个事务中购买的一组项目和用户在一小时内收听的歌曲列表都可以被视为会话。此外,用户在一小时内连续单击的网页也可以被视为会话。

    会话推荐( Session-based recommendation ):是指只利用用户在最近一段时期(会话)内的交互物品序列去预测用户下一个可能交互的物品,会话内的交互物品序列可准确捕捉用户的短期偏好,对于当前时间点的推荐具有重要意义。

 会话推荐分为会话内推荐会话间推荐。前者主要对会话内的依赖关系建模,来推荐会话中的未知的下一个或多个项目,后者主要对会话间依赖关系建模(有时也包括会话内依赖关系)来推荐下一个会话中可能出现的项目。

详细的会话推荐讲解:(15条消息) 【论文阅读】会话推荐系统综述 A Survey on Session-based Recommender Systems_-猫耳朵-的博客-CSDN博客_会话推荐系统

      2.1 摘要

           此论文将循环神经网络 (RNN) 应用于一个新领域,即推荐系统。现实生活中的推荐系统经常面临只能基于短会话数据(例如小型运动用品网站)而不是长用户历史(例如 Netflix)的问题在只有短会话数据的情况下,经常被称赞的矩阵分解方法并不准确。

          论文采用对会话进行建模,提出了一种基于RNN的方法(GRU4REC模型),考虑到推荐系统的实际任务,对经典的RNN进行了改进,使其更适用于这个特定问题。设计了适配于该推荐任务的ranking loss function(BPR和TOP1),两个数据集( RecSys Challenge 2015和 Youtube 的 OTT)的实验结果表明,与广泛使用的方法相比有显着改进。

     2.2  背景介绍:

     在特殊场景下我们得不到用户信息

     在一些特殊的场景下,我们无法得到过多的user信息,许多电子商务推荐系统(尤其是小型零售商的推荐系统)以及大多数新闻和媒体网站通常不会跟踪长时间访问其网站的用户的用户ID。并且在某些领域(例如分类网站)中,用户的行为通常表现出基于会话的特征。因此,应独立处理同一用户的后续会话。

  传统推荐系统存在的不足

  它们只关注用户的长期静态偏好,而忽略了用户的短期事务模式,这会导致用户的偏好随时间的推移而丢失。在这种情况下,用户在某个时间点的意图可能很容易被其历史购物行为淹没,从而导致不可靠的推荐。 把一个会话数据分解成立许多个独立的项目,没有挖掘到在同一个会话里面项目的关系。

   一些基于会话的推荐方法存在不足

     大多数基于会话的推荐系统往往采用简单的方法,例如item-to-item similarity(物品间相似性),co-occurrence, or transition probabilities(共现或概率转移)。这些方法虽然不使用用户信息,而且有效,但这些方法通常只考虑用户的最后一次点击或选择,而忽略过去点击的信息。

问题总结:对于缺少user-items矩阵的情况下,矩阵分解法(如LFM)不可用,常用基于领

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值