数据分析案例-数据科学相关岗位薪资可视化分析

80 篇文章 186 订阅 ¥9.90 ¥99.00
40 篇文章 63 订阅
好的,下面我为您提供一个简单的 Jupyter Notebook 数据可视化分析实例,它是一个对某个电商平台的销售情况进行数据可视化分析的项目。 1. 首先,我们需要导入所需的 Python 库,例如 pandas、matplotlib 和 seaborn: ``` import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ``` 2. 接下来,我们需要读取数据集,这里我们使用 Pandas 库的 read_csv() 函数来读取 CSV 格式的数据文件: ``` df = pd.read_csv('sales_data.csv') ``` 3. 数据读取完成后,我们可以使用 Pandas 库的 head() 函数来查看数据集的前几行: ``` df.head() ``` 4. 接下来,我们可以使用 Seaborn 库的 countplot() 函数来绘制订单状态的条形图: ``` sns.countplot(x='order_status', data=df) plt.show() ``` 5. 我们还可以使用 Matplotlib 库的 scatter() 函数来绘制订单金额和订单数量之间的散点图: ``` plt.scatter(x='order_amount', y='order_quantity', data=df) plt.xlabel('Order Amount') plt.ylabel('Order Quantity') plt.show() ``` 6. 最后,我们可以使用 Pandas 库的 groupby() 函数来计算每个月的销售总额,并使用 Matplotlib 库的 plot() 函数来绘制折线图: ``` monthly_sales = df.groupby('order_month')['order_amount'].sum() plt.plot(monthly_sales.index, monthly_sales.values) plt.xlabel('Month') plt.ylabel('Sales') plt.show() ``` 以上就是一个简单的 Jupyter Notebook 数据可视化分析实例,希望能对您有所帮助。当然,具体的项目内容和数据可视化方式可以根据实际需求进行调整和修改。
评论 148
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值