1 什么是复杂度分析?
1.数据结构和算法解决是 “如何让计算机更快时间、更省空间的解决问题”。
2.因此需从执行时间和占用空间两个维度来评估数据结构和算法的性能。
3.分别用时间复杂度和空间复杂度两个概念来描述性能问题,二者统称为复杂度。
4.复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。
2. 为什么要进行复杂度分析 ?
1.和性能测试相比,复杂度分析有不依赖执行环境、成本低、效率高、易操作、指导性强的特点。
2.掌握复杂度分析,将能编写出性能更优的代码,有利于降低系统开发和维护成本。
3 那如何进行复杂度分析呢?
1 大 O 表示法
算法的执行时间与每行代码的执行次数成正比ÿ

本文介绍了复杂度分析的重要性,讲解了大O表示法的时间复杂度和空间复杂度,提供了常见时间复杂度的排序,并讨论了如何进行复杂度分析,最后给出了字符串回文判断和数组去重的算法例子。
最低0.47元/天 解锁文章
&spm=1001.2101.3001.5002&articleId=124541912&d=1&t=3&u=53db4f3a6e4d43a68c43c5d81af92127)
874

被折叠的 条评论
为什么被折叠?



