目录
1.堆的概念及结构
如果有一个关键码的集合K ={K0 ,K1,K2,K3…,Kn-1,Kn },把它的所有元素按完全二叉树的顺序存储方式存储 在一个一维数组中,并满足:Ki<k2*i+1 且Ki<K2*i+2 (Ki>k2*i+1 且Ki>K2*i+2)则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树。
例如:

2.堆的创建
1.框架基本
本次代码建立一个小堆(即每一个父亲节点小于孩子节点)
#pragma once
#include<stdio.h>
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>
typedef int HPDataType;
typedef struct Heap
{
HPDataType* a;
size_t size;//表示数组的下标
size_t capacity;//表示容量的大小
}HP;
void Swap(HPDataType* pa, HPDataType* pb);//交换两个数据的位置
void HeapInit(HP* php);//堆初始化
void HeapDestroy(HP* php);//堆的销毁
void HeapPrint(HP* php);//打印数组
void HeapPush(HP* php, HPDataType x);//插入数据
void HeapPop(HP* php);//删除数据
bool HeapEmpty(HP* php);//判空
size_t HeapSize(HP* php);//判断堆中元素的个数
HPDataType HeapTop(HP* php);//返回堆中第一个元素
2.堆的插入和删除
插入

void Swap(HPDataType* pa, HPDataType* pb);
void AdjustUp(HPDataType* a, size_t child);
void AdjustDown(HPDataType* a, size_t size, size_t root);
void HeapPush(HP* php, HPDataType x)
{
assert(php);
if (php->size == php->capacity)
{
size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
HPDataType* tmp = r
这篇博客详细介绍了堆的概念、结构以及堆的创建过程,包括如何利用数组直接建堆进行排序。此外,还讨论了堆排序的时间复杂度,并重点讲解了如何解决TOP-K问题,即在大量数据中找到前K个最大或最小的元素。通过堆的使用,可以在O(N*logN)的时间复杂度内找到答案。
最低0.47元/天 解锁文章
4727

被折叠的 条评论
为什么被折叠?



