非线性非高斯模型的改进粒子滤波算法(Matlab代码实现)

  👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、引言

二、粒子滤波算法基本原理

三、非线性非高斯模型的改进粒子滤波算法

四、算法实现与仿真实验

五、结论与展望

📚2 运行结果

🎉3 参考文献

 🌈4 Matlab代码实现 


💥1 概述

由于红外、被动声纳等被动传感器具有隐蔽性好、抗干扰性强等特点,因此在现代战争中纯方位跟踪有着广泛的应用前景,吸引了许多学者进行研究。但是,纯方位跟踪又是跟踪问题的一个难点,主要是因为同主动跟踪问题相比,纯方位跟踪具有不可观测性,滤波非线性等特点。目前,针对纯方位跟踪研究多采用局部线性化的近似方法。扩展卡尔曼滤波( EKF) 是比较普遍适用的算法,此算法仅利用非线性函数 Taylor 展开的一阶项,只适用于弱非线性系统,在缺少距

离量测信息的条件下容易引起滤波的不稳定,甚至发散; 对于强非线性系统,不敏卡尔曼滤波( UKF) 有更 好的滤波效果,但是 UKF 和 EKF 都是在基于模型线性化和高斯假设的条件下,不适用于非高斯分布的模型。在处理非线性非高斯问题时,一种基于贝叶斯原理的序贯蒙特卡罗粒子滤波器表现出明显的优势[4-5]。在 用粒子滤波进行被动传感器目标跟踪时,其跟踪精度

主要取决于两个方面[5]: 一是采样得到的粒子分布是 否合理,能不能尽可能接近真实状态的后验概率分布。对这方面的研究主要通过选择好的重要性密度函数和在递推过程中克服权值退化和样本贫化问题Payne、Marron 等学者相继利用 EKF 和 UKF 产生建议分布对传统粒子滤波进行改进[6-7]。但是,在非高斯噪声或者过程噪声较大的情况下容易出现滤波发散; 文献[8]提出一种基于 EM 的高斯和粒子滤波算法,该算法通过 EM 产生量测更新过程中的加权粒子集来重新获得

后验状态密度,改善了粒子枯竭问题。但由于 EM 算法假定混合成分数为已知、迭代的结果需要依赖初始值、可能收敛到局部最大点或参数空间的边界,导致滤波过程后验状态密度估计误差增大,影响滤波精度。二是粒子滤波权值计算准确与否。粒子权值的大小代表状态在该粒子位置可能性的大小。当观测噪声突然增大时,粒子权值将会产生较大偏差。

一、引言

  • 背景介绍:简要介绍非线性非高斯模型在实际应用中的重要性,以及传统滤波方法(如扩展卡尔曼滤波、不敏卡尔曼滤波)在处理这类问题时的局限性。
  • 研究意义:阐述研究改进粒子滤波算法对于提高非线性非高斯系统状态估计的准确性和鲁棒性的重要意义。
  • 研究现状:概述当前粒子滤波算法的研究进展及其在各个领域的应用情况。

二、粒子滤波算法基本原理

  • 贝叶斯原理:介绍粒子滤波算法基于贝叶斯原理进行状态估计的基本原理。
  • 蒙特卡罗方法:阐述粒子滤波算法如何通过蒙特卡罗方法生成粒子集来近似后验状态密度。
  • 重要性采样与权值更新:详细说明粒子滤波算法中的重要性采样过程以及粒子权值的更新方法。

三、非线性非高斯模型的改进粒子滤波算法

  • 有限高斯混合模型:介绍使用有限高斯混合模型来近似后验状态密度的方法,以提高粒子滤波算法在处理非线性非高斯问题时的性能。
  • 变权平均似然函数:针对随机噪声对粒子权值准确性的影响,提出改进的变权平均似然函数,通过多次观测值计算粒子似然函数并对其求变权平均,以减小观测噪声对权值的影响。
  • 退火机制与Aitken加速EM算法:利用基于退火机制的Aitken加速EM算法(A-DAEM)取代传统粒子滤波的再采样过程,以克服EM算法容易陷入局部最值的缺点,并改善粒子枯竭问题。

四、算法实现与仿真实验

  • 算法实现步骤:详细描述改进粒子滤波算法的实现步骤,包括初始化、重要性采样、权值更新、状态估计和再采样等过程。
  • 仿真实验设计:设计仿真实验来验证改进粒子滤波算法的性能,包括选择合适的非线性非高斯模型、设置仿真参数和评价指标等。
  • 实验结果分析:对仿真实验结果进行分析,比较改进粒子滤波算法与传统粒子滤波算法在状态估计准确性和鲁棒性方面的差异,并验证算法的有效性。

五、结论与展望

  • 研究结论:总结研究改进粒子滤波算法在非线性非高斯模型中的成果和贡献。
  • 未来展望:展望改进粒子滤波算法在未来的研究方向和应用前景,提出可能的研究方向和改进措施。

📚2 运行结果

 

 部分代码:

 %重要性权值计算
        for i=1:N
            zPred_pf(:,t,i)=feval('hfun',XparticlePred_pf(:,t,i),x0,y0);
            weight(t,i)=(1-eta)*inv(sqrt(2*pi*det(R1)))*exp(-.5*(Z(:,t)...
                -zPred_pf(:,t,i))'*inv(R1)*(Z(:,t)-zPred_pf(:,t,i)))...
                +eta*inv(sqrt(2*pi*det(R2)))*exp(-.5*(Z(:,t)-...
                zPred_pf(:,t,i))'*inv(R2)*(Z(:,t)-zPred_pf(:,t,i)))...
                + 1e-99; %权值计算,为避免权值为0,用1e-99
        end
        weight(t,:)=weight(t,:)./sum(weight(t,:));%归一化权值
        outIndex = randomR(1:N,weight(t,:)');     %随机采样
        Xparticle_pf(:,t,:) = XparticlePred_pf(:,t,outIndex);%获取新采样值
        %状态估计
        mx=mean(Xparticle_pf(1,t,:));
        my=mean(Xparticle_pf(3,t,:));
        mvx=mean(Xparticle_pf(2,t,:));
        mvy=mean(Xparticle_pf(4,t,:));
        Xmean_pf(j,:,t)=[mx,mvx,my,mvy]';

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]周航,冯新喜,王蓉.非线性非高斯模型的改进粒子滤波算法[J].信号处理,2012,28(09):1327-1334.

 🌈4 Matlab代码实现 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值