递归:汉诺塔问题III

题目

题目描述

约 19 世纪末,在欧洲的商店中出售一种智力玩具:在一块铜板上有三根杆,最左边的杆自上而下、由小到大顺序串着由 64 个圆盘构成的塔。目的是将最左边杆上的圆盘全部移到右边的杆上,条件是一次只能移动一个圆盘,并且不允许大圆盘放在小圆盘的上面。现在我们改变这个游戏的玩法:不允许直接从最左(右)边移动到最右(左)边(每次移动一定是移到中间杆或从中间杆移出),也不允许大圆盘放到小圆盘的上面。Daisy 已经做过原来的汉诺塔问题和汉诺塔 Ⅱ问题,但碰到这个问题时,她想了很久都无法解决。请你帮助她。现在有~个圆盘,她至少需要多少次移动才能把这些圆盘从最左边移到最右边?

输入

包含多组数据,每次输入一个N值(1≤N≤35)。 

输出

对于每组数据,输出移动最小的次数。

样例输入

1

3

12

 样例输出

2

26

531440

解答

分析 

汉诺塔问题历来被认为是理解递归最好的例题,凡是涉及递归的教科书,其教学用例十有八九会采用汉诺塔。这里给出汉诺塔问题的一个变种,旨在通过该问题让读者更好地理解递归策略。
与原始的汉诺塔问题不同,该变种对圆盘的移动做了更多的限制,即每次只允许将圆盘移到中间杆上或从中间杆上移出,即不允许直接将圆盘从第一根杆上移到第三根杆上,或直接将圆盘从第三根杆上移到第一根杆上。-在这种情况下,考虑第一根杆上移动N个圆盘到第三根杆上。为了将初始时最底下、最大的圆盘移动到第三根杆上,首先需要将其上的N-1个圆盘移动到第三根杆上,而这恰好等价于从第一根杆上移动N-1个圆盘到第三根杆上。这一移动完成后,第一根杆上仅剩下最大的圆盘,第二根杆上为空,第三根杆上按顺序摆放着N-1个圆盘。将最大的圆盘移动到此时没有任何圆盘的第二根杆上,并再次将N-1个圆盘从第三根杆上移动到第一根杆上,此时仍然需要N-1个圆盘从第一根杆上移动到第三根杆上所需的移动次数(第一根杆和第三根杆等价),这一移动完成后,将最大的圆盘移到第三根杆上,最后将N-1个圆盘从第一根杆上移动到第三根杆上。若从第一根杆上移动 N 个圆盘到第三根杆上需要 F[N]次移动,那么综上所述 F[N]的组成方式如下:先移动N-1个圆盘到第三根杆上需要 F[N-11次移动,然后将最大的圆盘移动到中间杆上需要1次移动,再将N-1个圆盘移动回第一根杆上同样需要 F[N-1]次移动,移动最大的盘子到第三根杆上需要1次移动,最后将N-1个圆盘移动到第三根杆上需要F[N-1]次移动,于是便有了F[N]=3F[N-1]+2。也就是说,从第一根杆上移动N个圆盘到第三根杆上,需要三次从第一根杆上移动N-1个圆盘到第三根杆上,外加两次对最大圆盘的移动。这样就可以将移动 N个圆盘的问题转换为问题相同但规模更小的移动N-1个圆盘的问题。于是,满足了递归的第一个条件。
同时,要确定该问题的递归出口。当N为1时,即从第一根杆上移动一个盘子到第三根杆上,所需的移动次数显而易见为 2。移动一个盘子所需次数是最底层的子问题,该子问题不可继续分解且易于求解。这便是递归的出口,于是满足了递归的第二个条件。

代码

import java.util.Scanner;

/**
 * 汉诺塔问题III
 */
public class test10 {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();

        System.out.println(hanoi(n));
    }

    public static int hanoi(int n){
        if(n == 1){
            return 2;
        }else {
            return 3*hanoi(n-1) + 2;
        }
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沙河板混

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值