目录
一、按键分区状态(Keyed State)
1、值状态(ValueState)
我们这里会使用用户 id 来进行分流,然后分别统计每个用户的 pv 数据,由于我们并不想每次 pv 加一,就将统计结果发送到下游去,所以这里我们注册了一个定时器,用来隔一段时间发送 pv 的统计结果,这样对下游算子的压力不至于太大。具体实现方式是定义一个用来保存定时器时间戳的值状态变量。当定时器触发并向下游发送数据以后,便清空储存定时器时间 戳的状态变量,这样当新的数据到来时,发现并没有定时器存在,就可以注册新的定时器了, 注册完定时器之后将定时器的时间戳继续保存在状态变量中。
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
.assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
@Override
public long extractTimestamp(Event element, long recordTimestamp) {
return element.timestamp;
}
})
);
stream.print("input");
// 统计每个用户的pv,隔一段时间(10s)输出一次结果
stream.keyBy(data -> data.user)
.process(new PeriodicPvResult())
.print();
env.execute();
}
// 注册定时器,周期性输出pv
public static class PeriodicPvResult extends KeyedProcessFunction<String ,Event, String>{
// 定义两个状态,保存当前pv值,以及定时器时间戳
ValueState<Long> countState;
ValueState<Long> timerTsState;
@Override
public void open(Configuration parameters) throws Exception {
countState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("count", Long.class));
timerTsState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("timerTs", Long.class));
}
@Override
public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
// 更新count值
Long count = countState.value();
if (count == null){
countState.update(1L);
} else {
countState.update(count + 1);
}
// 注册定时器
if (timerTsState.value() == null){
ctx.timerService().registerEventTimeTimer(value.timestamp + 10 * 1000L);
timerTsState.update(value.timestamp + 10 * 1000L);
}
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
out.collect(ctx.getCurrentKey() + " pv: " + countState.value());
// 清空状态
timerTsState.clear();
}
}
2. 列表状态(ListState)
在 Flink SQL 中,支持两条流的全量 Join ,语法如下:SELECT * FROM A INNER JOIN B WHERE A.id = B.id ;这样一条 SQL 语句要慎用,因为 Flink 会将 A 流和 B 流的所有数据都保存下来,然后进行 Join 。不过在这里我们可以用列表状态变量来实现一下这个 SQL 语句的功能。代码如下:
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<Tuple3<String, String, Long>> stream1 = env
.fromElements(
Tuple3.of("a", "stream-1", 1000L),
Tuple3.of("b", "stream-1", 2000L)
)
.assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, String, Long>>forMonotonousTimestamps()
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, String, Long>>() {
@Override
public long extractTimestamp(Tuple3<String, String, Long> t, long l) {
return t.f2;
}
})
);
SingleOutputStreamOperator<Tuple3<String, String, Long>> stream2 = env
.fromElements(
Tuple3.of("a", "stream-2", 3000L),
Tuple3.of("b", "stream-2", 4000L)
)
.assignTimestampsAndWatermarks(
WatermarkStrategy.<Tuple3<String, String, Long>>forMonotonousTimestamps()
.withTimestampAssigner(new SerializableTimestampAssigner<Tuple3<String, String, Long>>() {
@Override
public long extractTimestamp(Tuple3<String, String, Long> t, long l) {
return t.f2;
}
})
);
stream1.keyBy(r -> r.f0)
.connect(stream2.keyBy(r -> r.f0))
.process(new CoProcessFunction<Tuple3<String, String, Long>, Tuple3<String, String, Long>, String>() {
private ListState<Tuple3<String, String, Long>> stream1ListState;
private ListState<Tuple3<String, String, Long>> stream2ListState;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
stream1ListState = getRuntimeContext().getListState(
new ListStateDescriptor<Tuple3<String, String, Long>>("stream1-list", Types.TUPLE(Types.STRING, Types.STRING))
);
stream2ListState = getRuntimeContext().getListState(
new ListStateDescriptor<Tuple3<String, String, Long>>("stream2-list", Types.TUPLE(Types.STRING, Types.STRING))
);
}
@Override
public void processElement1(Tuple3<String, String, Long> left, Context context, Collector<String> collector) throws Exception {
stream1ListState.add(left);
for (Tuple3<String, String, Long> right : stream2ListState.get()) {
collector.collect(left + " => " + right);
}
}
@Override
public void processElement2(Tuple3<String, String, Long> right, Context context, Collector<String> collector) throws Exception {
stream2ListState.add(right);
for (Tuple3<String, String, Long> left : stream1ListState.get()) {
collector.collect(left + " => " + right);
}
}
})
.print();
env.execute();
}
3. 映射状态(MapState)
可以通过 MapState 的使用来探 索一下窗口的底层实现,也就是我们要用映射状态来完整模拟窗口的功能。这里我们模拟一个 滚动窗口。我们要计算的是每一个 url 在每一个窗口中的 pv 数据。我们之前使用增量聚合和全窗口聚合结合的方式实现过这个需求。这里我们用 MapState 再来实现一下。
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
.assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
@Override
public long extractTimestamp(Event element, long recordTimestamp) {
return element.timestamp;
}
})
);
// 统计每10s窗口内,每个url的pv
stream.keyBy(data -> data.url)
.process(new FakeWindowResult(10000L))
.print();
env.execute();
}
public static class FakeWindowResult extends KeyedProcessFunction<String, Event, String>{
// 定义属性,窗口长度
private Long windowSize;
public FakeWindowResult(Long windowSize) {
this.windowSize = windowSize;
}
// 声明状态,用map保存pv值(窗口start,count)
MapState<Long, Long> windowPvMapState;
@Override
public void open(Configuration parameters) throws Exception {
windowPvMapState = getRuntimeContext().getMapState(new MapStateDescriptor<Long, Long>("window-pv", Long.class, Long.class));
}
@Override
public void processElement(Event value, Context ctx, Collector<String> out) throws Exception {
// 每来一条数据,就根据时间戳判断属于哪个窗口
Long windowStart = value.timestamp / windowSize * windowSize;
Long windowEnd = windowStart + windowSize;
// 注册 end -1 的定时器,窗口触发计算
ctx.timerService().registerEventTimeTimer(windowEnd - 1);
// 更新状态中的pv值
if (windowPvMapState.contains(windowStart)){
Long pv = windowPvMapState.get(windowStart);
windowPvMapState.put(windowStart, pv + 1);
} else {
windowPvMapState.put(windowStart, 1L);
}
}
// 定时器触发,直接输出统计的pv结果
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception {
Long windowEnd = timestamp + 1;
Long windowStart = windowEnd - windowSize;
Long pv = windowPvMapState.get(windowStart);
out.collect( "url: " + ctx.getCurrentKey()
+ " 访问量: " + pv
+ " 窗口:" + new Timestamp(windowStart) + " ~ " + new Timestamp(windowEnd));
// 模拟窗口的销毁,清除map中的key
windowPvMapState.remove(windowStart);
}
}
4. 聚合状态(AggregatingState)
对用户点击事件流每 5 个数据统计一次平均时间戳。这是一个类似计数窗口 求平均值的计算,这里我们可以使用一个有聚合状态的 RichFlatMapFunction 来实现。
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
.assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
@Override
public long extractTimestamp(Event element, long recordTimestamp) {
return element.timestamp;
}
})
);
// 统计每个用户的点击频次,到达5次就输出统计结果
stream.keyBy(data -> data.user)
.flatMap(new AvgTsResult())
.print();
env.execute();
}
public static class AvgTsResult extends RichFlatMapFunction<Event, String>{
// 定义聚合状态,用来计算平均时间戳
AggregatingState<Event, Long> avgTsAggState;
// 定义一个值状态,用来保存当前用户访问频次
ValueState<Long> countState;
@Override
public void open(Configuration parameters) throws Exception {
avgTsAggState = getRuntimeContext().getAggregatingState(new AggregatingStateDescriptor<Event, Tuple2<Long, Long>, Long>(
"avg-ts",
new AggregateFunction<Event, Tuple2<Long, Long>, Long>() {
@Override
public Tuple2<Long, Long> createAccumulator() {
return Tuple2.of(0L, 0L);
}
@Override
public Tuple2<Long, Long> add(Event value, Tuple2<Long, Long> accumulator) {
return Tuple2.of(accumulator.f0 + value.timestamp, accumulator.f1 + 1);
}
@Override
public Long getResult(Tuple2<Long, Long> accumulator) {
return accumulator.f0 / accumulator.f1;
}
@Override
public Tuple2<Long, Long> merge(Tuple2<Long, Long> a, Tuple2<Long, Long> b) {
return null;
}
},
Types.TUPLE(Types.LONG, Types.LONG)
));
countState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("count", Long.class));
}
@Override
public void flatMap(Event value, Collector<String> out) throws Exception {
Long count = countState.value();
if (count == null){
count = 1L;
} else {
count ++;
}
countState.update(count);
avgTsAggState.add(value);
// 达到5次就输出结果,并清空状态
if (count == 5){
out.collect(value.user + " 平均时间戳:" + new Timestamp(avgTsAggState.get()));
countState.clear();
}
}
}
二、算子状态(Operator State)
状态从本质上来说就是算子并行子任务实例上的一个特殊本地变量。它的特殊之处就在于 Flink 会提供完整的管理机制,来保证它的持久化保存,以便发生故障时进行状态恢复;另外还可以针对不同的 key 保存独立的状态实例。按键分区状态( Keyed State )对这两个功能都要考虑;而算子状态(Operator State )并不考虑 key 的影响,所以主要任务就是要让 Flink 了解状态的信息、将状态数据持久化后保存到外部存储空间。
并行度可能发生了调整,不论是按键(key )的哈希值分区,还是直接轮询(round-robin )分区,数据分配到的分区都会发生变化。这很好理解,当打牌的人数从 3 个增加到 4 个时,即使牌的次序不变,轮流发到每个人手里的牌也会不同。数据分区发生变化,带来的问题就是,怎么保证原先的状态跟故障恢复后数据的对应关系呢?对于 Keyed State 这个问题很好解决:状态都是跟 key 相关的,而相同 key 的数据不管发往哪个分区,总是会全部进入一个分区的;于是只要将状态也按照 key 的哈希值计算出对应的分区,进行重组分配就可以了。恢复状态后继续处理数据,就总能按照 key 找到对应之前的状态,就保证了结果的一致性。所以 Flink 对 Keyed State 进行了非常完善的包装,我们不需实现任何接口就可以直接使用。而对于 Operator State 来说就会有所不同。因为不存在 key ,所有数据发往哪个分区是不可预测的;也就是说,当发生故障重启之后,我们不能保证某个数据跟之前一样,进入到同一个并行子任务、访问同一个状态。所以 Flink 无法直接判断该怎样保存和恢复状态,而是提供了接口,让我们根据业务需求自行设计状态的快照保存(snapshot )和恢复( restore )逻辑。
1. CheckpointedFunction 接口
自定义的 SinkFunction 会在 CheckpointedFunction 中进行数据缓存,然后统一发送到下游。这个例子演示了列表状态的平均分割重组(event-split redistribution )。
public static void main(String[] args) throws Exception{
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.enableCheckpointing(10000L);
// env.setStateBackend(new EmbeddedRocksDBStateBackend());
// env.getCheckpointConfig().setCheckpointStorage(new FileSystemCheckpointStorage(""));
CheckpointConfig checkpointConfig = env.getCheckpointConfig();
checkpointConfig.setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
checkpointConfig.setMinPauseBetweenCheckpoints(500);
checkpointConfig.setCheckpointTimeout(60000);
checkpointConfig.setMaxConcurrentCheckpoints(1);
checkpointConfig.enableExternalizedCheckpoints(
CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
checkpointConfig.enableUnalignedCheckpoints();
SingleOutputStreamOperator<Event> stream = env.addSource(new ClickSource())
.assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forMonotonousTimestamps()
.withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
@Override
public long extractTimestamp(Event element, long recordTimestamp) {
return element.timestamp;
}
})
);
stream.print("input");
// 批量缓存输出
stream.addSink(new BufferingSink(10));
env.execute();
}
public static class BufferingSink implements SinkFunction<Event>, CheckpointedFunction {
private final int threshold;
private transient ListState<Event> checkpointedState;
private List<Event> bufferedElements;
public BufferingSink(int threshold) {
this.threshold = threshold;
this.bufferedElements = new ArrayList<>();
}
@Override
public void invoke(Event value, Context context) throws Exception {
bufferedElements.add(value);
if (bufferedElements.size() == threshold) {
for (Event element: bufferedElements) {
// 输出到外部系统,这里用控制台打印模拟
System.out.println(element);
}
System.out.println("==========输出完毕=========");
bufferedElements.clear();
}
}
// 保存状态快照到检查点时,调用这个方法
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
checkpointedState.clear();
// 把当前局部变量中的所有元素写入到检查点中
for (Event element : bufferedElements) {
checkpointedState.add(element);
}
}
// 初始化状态时调用这个方法,也会在恢复状态时调用
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
ListStateDescriptor<Event> descriptor = new ListStateDescriptor<>(
"buffered-elements",
Types.POJO(Event.class));
checkpointedState = context.getOperatorStateStore().getListState(descriptor);
// 如果是从故障中恢复,就将ListState中的所有元素添加到局部变量中
if (context.isRestored()) {
for (Event element : checkpointedState.get()) {
bufferedElements.add(element);
}
}
}
}
三、广播状态(Broadcast State)
什么时候会用到这样的广播状态呢?一个最为普遍的应用,就是“动态配置”或者“动态规则”。我们在处理流数据时,有时会基于一些配置(configuration)或者规则( rule )。简单的配置当然可以直接读取配置文件,一次加载,永久有效;但数据流是连续不断的,如果这配置随着时间推移还会动态变化,那又该怎么办呢?一个简单的想法是,定期扫描配置文件,发现改变就立即更新。但这样就需要另外启动一个扫描进程,如果扫描周期太长,配置更新不及时就会导致结果错误;如果扫描周期太短,又会耗费大量资源做无用功。解决的办法,还是流处理的“事件驱动”思路——我们可以将这动态的配置数据看作一条流,将这条流和本身要处理的数据流进行连接(connect ),就可以实时地更新配置进行计算了。由于配置或者规则数据是全局有效的,我们需要把它广播给所有的并行子任务。而子任务需要把它作为一个算子状态保存起来,以保证故障恢复后处理结果是一致的。这时的状态,就是一个典型的广播状态。广播状态与其他算子状态的列表(list )结构不同,底层是以键值对(key-value )形式描述的,所以其实就是一个映射状态( MapState )。
在电商应用中,往往需要判断用户先后发生的行为的“组合模式”,比如“登录- 下单”或者“登录 - 支付”,检测出这些连续的行为进行统计,就可以了解平台的运用状况以及用户的行为习惯。
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
// 读取用户行为事件流
DataStreamSource<Action> actionStream = env.fromElements(
new Action("Alice", "login"),
new Action("Alice", "pay"),
new Action("Bob", "login"),
new Action("Bob", "buy")
);
// 定义行为模式流,代表了要检测的标准
DataStreamSource<Pattern> patternStream = env
.fromElements(
new Pattern("login", "pay"),
new Pattern("login", "buy")
);
// 定义广播状态的描述器,创建广播流
MapStateDescriptor<Void, Pattern> bcStateDescriptor = new MapStateDescriptor<>(
"patterns", Types.VOID, Types.POJO(Pattern.class));
BroadcastStream<Pattern> bcPatterns = patternStream.broadcast(bcStateDescriptor);
// 将事件流和广播流连接起来,进行处理
DataStream<Tuple2<String, Pattern>> matches = actionStream
.keyBy(data -> data.userId)
.connect(bcPatterns)
.process(new PatternEvaluator());
matches.print();
env.execute();
}
public static class PatternEvaluator
extends KeyedBroadcastProcessFunction<String, Action, Pattern, Tuple2<String, Pattern>> {
// 定义一个值状态,保存上一次用户行为
ValueState<String> prevActionState;
@Override
public void open(Configuration conf) {
prevActionState = getRuntimeContext().getState(
new ValueStateDescriptor<>("lastAction", Types.STRING));
}
@Override
public void processBroadcastElement(
Pattern pattern,
Context ctx,
Collector<Tuple2<String, Pattern>> out) throws Exception {
BroadcastState<Void, Pattern> bcState = ctx.getBroadcastState(
new MapStateDescriptor<>("patterns", Types.VOID, Types.POJO(Pattern.class)));
// 将广播状态更新为当前的pattern
bcState.put(null, pattern);
}
@Override
public void processElement(Action action, ReadOnlyContext ctx,
Collector<Tuple2<String, Pattern>> out) throws Exception {
Pattern pattern = ctx.getBroadcastState(
new MapStateDescriptor<>("patterns", Types.VOID, Types.POJO(Pattern.class))).get(null);
String prevAction = prevActionState.value();
if (pattern != null && prevAction != null) {
// 如果前后两次行为都符合模式定义,输出一组匹配
if (pattern.action1.equals(prevAction) && pattern.action2.equals(action.action)) {
out.collect(new Tuple2<>(ctx.getCurrentKey(), pattern));
}
}
// 更新状态
prevActionState.update(action.action);
}
}
// 定义用户行为事件POJO类
public static class Action {
public String userId;
public String action;
public Action() {
}
public Action(String userId, String action) {
this.userId = userId;
this.action = action;
}
@Override
public String toString() {
return "Action{" +
"userId=" + userId +
", action='" + action + '\'' +
'}';
}
}
// 定义行为模式POJO类,包含先后发生的两个行为
public static class Pattern {
public String action1;
public String action2;
public Pattern() {
}
public Pattern(String action1, String action2) {
this.action1 = action1;
this.action2 = action2;
}
@Override
public String toString() {
return "Pattern{" +
"action1='" + action1 + '\'' +
", action2='" + action2 + '\'' +
'}';
}
}
978

被折叠的 条评论
为什么被折叠?



