文章目录
前言
在图像处理中,平滑(或模糊)是一种常见的前处理技术,用于去除噪声、减少细节干扰,或为后续的边缘检测等任务做准备。OpenCV提供了多种平滑方法,每种方法都有其独特的适用场景。本文将详细介绍均值滤波、高斯滤波、中值滤波、双边滤波和方框滤波的原理及实现方法,并附Python代码示例。
一、图像平滑的作用与核心思想
图像平滑通过卷积操作实现,其核心是使用一个滤波器核(或称为卷积核)在图像上滑动,对邻域像素进行加权计算,从而生成新的像素值。不同的滤波器核决定了平滑效果的特点。可以用来压制、弱化或消除图像中的细节、突变、边缘和噪声。但最常见的是用来减少图像上的噪声或者失真。
二、均值滤波(Averaging)
- 原理:用邻域内所有像素的平均值代替中心像素值。
- 函数:cv2.blur()
- 特点:简单快速,但会导致边缘模糊,适合均匀噪声。
- 参数说明:核大小(width, height)需为正奇数。
1、dst=cv2.blur(src,ksize,anchor,borderType)
dst是返回值
src是需要处理的图像
kszie是滤波核(卷积核)的大小
anchor是锚点,默认值是(-1,-1)一般无需更改
borderType是边界样式,一般无需更改
一般情况下,使用dst=cv2.blur(src,ksize)即可
2、数据预处理
import cv2
import numpy as np
def add_peppersalt_noise(image, n=10000):
result = image.copy()
h, w = image.shape[:2] # 获取图片的高和宽
for i in range(n): # 生成n个椒盐噪声
x = np.random.randint(1, h)
y= np.random.randint(1, w)
if np.random.randint(0, 2) == 0:
result[x, y] = 0
else:
result[x,y] = 255
return result
image = cv2.imread('suolong.jpg')
cv2.imshow('sro',image)
cv2.waitKey(0)
noise = add_peppersalt_noise(image)
cv2.imshow('noise',noise)
cv2.waitKey(0)
3、均值滤波代码实现
blur_1 = cv2.blur(noise,(3,3)) #卷积核为3,3 效果一般,清晰度一般
cv2.imshow('blur_1',blur_1)
cv2.waitKey(0)
blur_2 = cv2.blur(noise,(5,5))#卷积核为5,5 效果稍好但模糊
cv2.imshow('blur_2',blur_2)
cv2.waitKey(0)
4.运行结果:
三、方框滤波(Box Filter)
- 原理:与均值滤波类似,但可控制是否归一化。
- 函数:cv2.boxFilter()
- 特点:当normalize=False时,像素值可能溢出(需用cv2.convertScaleAbs处理)。
1. dst=cv2.boxFilter(src,ddepth,ksize,anchor,normalize,borderType)
● dst是返回值,表示进行方框滤波后得到的处理结果。
● src 是需要处理的图像,即原始图像。
● ddepth是处理结果图像的图像深度,一般使用-1表示与原始图像使用相同的图像深度。(可以理解为数据类型)
● ksize 是滤波核的大小。滤波核大小是指在滤波处理过程中所选择的邻域图像的高 度和宽度。
● anchor 是锚点,(指对应哪个区域)
● normalize 表示在滤波时是否进行归一化。
当值为True时,归一化,用邻域像素值的和除以面积。 此时方框滤波与 均值滤波 效果相同。
当值为False时,不归一化,直接使用邻域像素值的和。和>255时使用255。
2. 方框滤波代码实现
boxFilter_1 = cv2.boxFilter(noise,-1,(3,3),normalize = True)
cv2.imshow('boxFilter_1',boxFilter_1)
cv2.waitKey(0)
boxFilter_2 = cv2.boxFilter(noise,-1,(3,3),normalize = False)
cv2.imshow('boxFilter_2',boxFilter_2)
cv2.waitKey(0)
3.运行结果:
三、高斯滤波(Gaussian Blur)
- 原理:根据高斯分布为邻域像素分配不同权重,距离中心越近权重越高。
- 函数:cv2.GaussianBlur()
- 特点:保留边缘效果优于均值滤波,适合高斯噪声。
- 关键参数:核大小(必须为正奇数)、标准差sigmaX。
1.cv2.GaussianBlur(src, ksize[, sigmaX[, sigmaY[, dst]]])
- src:输入图像,通常是一个NumPy数组。
- ksize:滤波器的大小,它是一个元组,表示在水平和垂直方向上的像素数量。例如,(5, 5)表示一个5x5的滤波器。
- sigmaX和sigmaY:分别表示在X轴和Y轴方向上的标准差。这些值与滤波器大小相同。默认情况下,它们都等于0,这意味着没有高斯模糊。
- dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。
2.高斯滤波代码实现
GaussianB = cv2.GaussianBlur(noise,(3,3),1) #标准差为1,标准正太分布。
cv2.imshow('GaussianBlur',GaussianB)
cv2.waitKey(0)
3.运行结果:
四、中值滤波(Median Blur)
- 原理:取邻域像素的中值作为中心像素值。
- 函数:cv2.medianBlur()
- 特点:对椒盐噪声(黑白点)有奇效,但计算较慢。
- 注意:核大小必须为正奇数(如3,5,7)。
1.cv2.medianBlur(src, ksize[, dst])
参数说明:
- src:输入图像。
- ksize:滤波器的大小,它是一个整数,表示在水平和垂直方向上的像素数量。例如,5表示一个5x5的滤波器。
- dst:输出图像,通常是一个NumPy数组。如果为None,则会创建一个新的数组来存储结果。
2.中值滤波代码实现
medianB = cv2.medianBlur(noise,5)
cv2.imshow('medianBlur',medianB)
cv2.waitKey(0)
cv2.destroyAllWindows()
3.运行结果:
五、方法对比与选择建议
六、总结
选择合适的平滑方法需考虑噪声类型、边缘保留需求和实时性要求。例如处理手机拍摄的低光照图像时,可先用高斯滤波降噪;而处理医学图像中的斑点噪声时,中值滤波可能是更优解。建议通过实验对比不同参数的效果,找到最佳平衡点