《吴恩达网络课程神经网络与深度学习》——第一周测试题

文章讨论了AI对行业的影响,深度学习兴起的原因,包括计算能力和数据量的增加,以及在模型迭代和算法优化中的作用。同时,提到了ReLU激活函数、结构化和非结构化数据的概念,并解释了循环神经网络在机器翻译中的应用。
摘要由CSDN通过智能技术生成

《吴恩达网络课程神经网络与深度学习》

《吴恩达网络课程神经网络与深度学习》

第一周检测-题干部分

第一周检测题答案

第一周检测-题干部分

  1. What does the analogy “AI is the new electricity” refer to?(和“AI 是新电力”相类似的说法是

    什么?)

【A】AI is powering personal devices in our homes and offices, similar to electricity.(AI 为我们

的家庭和办公室的个人设备供电,类似于电力。)

【B】Through the “smart grid”, AI is delivering a new wave of electricity.(通过“智能电网”,AI

提供新的电能。)

【C】AI runs on computers and is thus powered by electricity, but it is letting computers do

things not possible before.(AI 在计算机上运行,并由电力驱动,但是它正在让以前的计算机不

能做的事情变为可能。)

【D】Similar to electricity starting about 100 years ago, AI is transforming multiple

industries.(就像 100 年前产生电能一样,AI 正在改变很多的行业。)

2. Which of these are reasons for Deep Learning recently taking off? (Check the two options that apply.)(哪些是深度学习快速发展的原因? (两个选项))

【A】 We have access to a lot more computational power.(现在我们有了更好更快的计算能

力。)

【B】Neural Networks are a brand new field.(神经网络是一个全新的领域。)

【C】 We have access to a lot more data.(我们现在可以获得更多的数据。)

【D】Deep learning has resulted in significant improvements in important applications such as

online advertising, speech recognition, and image recognition.(深度学习已经取得了重大的进

展,比如在在线广告、语音识别和图像识别方面有了很多的应用。)

3. Recall this diagram of iterating over different ML ideas. Which of the statements below are

true? (Check all that apply.)(回想一下关于不同的机器学习思想的迭代图。下面哪(个/些)陈

述是正确的?)

【A】Being able to try out ideas quickly allows deep learning engineers to iterate more

quickly.(能够让深度学习工程师快速地实现自己的想法。)

【B】Faster computation can help speed up how long a team takes to iterate to a good idea.(在

更好更快的计算机上能够帮助一个团队减少迭代(训练)的时间。)

【C】It is faster to train on a big dataset than a small dataset.(在数据量很多的数据集上训练上的

时间要快于小数据集。)

【D】Recent progress in deep learning algorithms has allowed us to train good models faster

(even without changing the CPU/GPU hardware).(使用更新的深度学习算法可以使我们能够更

快地训练好模型(即使更换 CPU / GPU 硬件)。)

4. When an experienced deep learning engineer works on a new problem, they can usually use insight from previous problems to train a good model on the first try, without needing to

iterate multiple times through different models. True/False?( 当一个经验丰富的深度学习工

程师在处理一个新的问题的时候,他们通常可以利用先前的经验来在第一次尝试中训练一个

表现很好的模型,而不需要通过不同的模型迭代多次从而选择一个较好的模型,这个说法是

正确的吗?)

【A】True(正确)

【B】 False(错误)

5. Which one of these plots represents a ReLU activation function? (这些图中的哪一个表示

ReLU 激活功能?)

6. Images for cat recognition is an example of “structured” data, because it is represented as a structured array in a computer. True/False?(用于识别猫的图像是“结构化”数据的一个例子,因为它在计算机中被表示为结构化矩阵,是真的吗?)

【A】True(正确)

【B】 False(错误)

7. A demographic dataset with statistics on different cities’ population, GDP per capita,

economic growth is an example of “unstructured” data because it contains data coming from different sources. True/False? (统计不同城市人口、人均 GDP、经济增长的人口统计数据集 是“非结构化”数据的一个例子,因为它包含来自不同来源的数据,是真的吗?)

【A】True(正确)

【B】 False(错误)

8. Why is an RNN (Recurrent Neural Network) used for machine translation, say translating

English to French? (Check all that apply.)(为什么在上 RNN(循环神经网络)可以应用机器翻译将英语翻译成法语?)

【A】It can be trained as a supervised learning problem. (因为它可以被用做监督学习。)

【B】It is strictly more powerful than a Convolutional Neural Network (CNN).(严格意义上它比

卷积神经网络(CNN)效果更好。)

【C】It is applicable when the input/output is a sequence (e.g., a sequence of words). (它比较

适合用于当输入/输出是一个序列的时候(例如:一个单词序列))

【D】RNNs represent the recurrent process of Idea->Code->Experiment->Idea->….(RNNs 代表

递归过程:想法->编码->实验->想法->…)

9.  In this diagram which we hand-drew in lecture, what do the horizontal axis (x-axis) and vertical axis (y-axis) represent?(在我们手绘的这张图中,横轴(x 轴)和纵轴(y 轴)代表

什么? )

10. Assuming the trends described in the previous question’s figure are accurate (and hoping you got the axis labels right), which of the following are true? (Check all that apply.) (假设上一个问题图中描述的是准确的(并且希望您的轴标签正确),以下哪一项是正确的?

【A】Increasing the training set size generally does not hurt an algorithm performance, and it

may help significantly. (增加训练集的大小通常不会影响算法的性能,这可能会有很大的帮

助。)

【B】 Increasing the size of a neural network generally does not hurt an algorithm

performance, and it may help significantly.(增加神经网络的大小通常不会影响算法的性能,这

可能会有很大的帮助。)

【C】Decreasing the training set size generally does not hurt an algorithm performance, and it

may help significantly.(减小训练集的大小通常不会影响算法的性能,这可能会有很大的帮

助。)

【D】Decreasing the size of a neural network generally does not hurt an algorithm performance,

and it may help significantly.(减小神经网络的大小通常不会影响算法的性能,这可能会有很大

的帮助。)

第一周检测题答案

1. D

Note: Andrew illustrated the same idea in the lecture.(注: 吴恩达在视频中表达了同样的观点。)

2. A C

3. A B D

Note: A bigger dataset generally requires more time to train on a same model.( 请注意: 同一模型在较大的数据集上通常需要花费更多时间。)

4. B

Note: Maybe some experience may help, but nobody can always find the best model or hyperparameters without iterations.(注:也许之前的一些经验可能会有所帮助,但没有人总是可以找到最佳模型或超参数而无需迭代多次。)

5. C

6. B

7. B

8. A C

9. x-axis is the amount of data(x 轴是数据量)

y-axis (vertical axis) is the performance of the algorithm.(y 轴(垂直轴)是算法的性能)

10. A B

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值