P3397 地毯
题目背景
题目描述
在 n × n n\times n n×n 的格子上有 m m m 个地毯。
给出这些地毯的信息,问每个点被多少个地毯覆盖。
输入格式
第一行,两个正整数 n , m n,m n,m。意义如题所述。
接下来 m m m 行,每行两个坐标 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 和 ( x 2 , y 2 ) (x_2,y_2) (x2,y2),代表一块地毯,左上角是 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),右下角是 ( x 2 , y 2 ) (x_2,y_2) (x2,y2)。
输出格式
输出 n n n 行,每行 n n n 个正整数。
第 i i i 行第 j j j 列的正整数表示 ( i , j ) (i,j) (i,j) 这个格子被多少个地毯覆盖。
输入输出样例 #1
输入 #1
5 3
2 2 3 3
3 3 5 5
1 2 1 4
输出 #1
0 1 1 1 0
0 1 1 0 0
0 1 2 1 1
0 0 1 1 1
0 0 1 1 1
说明/提示
样例解释
覆盖第一个地毯后:
| 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
|---|---|---|---|---|
| 0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
| 0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
| 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
| 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
覆盖第一、二个地毯后:
| 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 |
|---|---|---|---|---|
| 0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
| 0 0 0 | 1 1 1 | 2 2 2 | 1 1 1 | 1 1 1 |
| 0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
| 0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
覆盖所有地毯后:
| 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 | 0 0 0 |
|---|---|---|---|---|
| 0 0 0 | 1 1 1 | 1 1 1 | 0 0 0 | 0 0 0 |
| 0 0 0 | 1 1 1 | 2 2 2 | 1 1 1 | 1 1 1 |
| 0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |
| 0 0 0 | 0 0 0 | 1 1 1 | 1 1 1 | 1 1 1 |

数据范围
对于 20 % 20\% 20% 的数据,有 n ≤ 50 n\le 50 n≤50, m ≤ 100 m\le 100 m≤100。
对于 100 % 100\% 100% 的数据,有 n , m ≤ 1000 n,m\le 1000 n,m≤1000。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll; // 严格要求
ll a[1010][1010], sum[1010][1010];
int main(){
ios :: sync_with_stdio(0); // 提高cin、cout的运行速度
ll n, m;
cin >> n >> m;
while(m--){
ll x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
//不能理解看下图
a[x1][y1]++;
a[x1][y2 + 1]--;
a[x2 + 1][y1]--;
a[x2 + 1][y2 + 1] ++;
}
for(ll i = 1; i <= n; i++){
for(ll j = 1; j <= n; j++){
sum[i][j] = sum[i - 1][j] + sum[i][j - 1] -sum[i - 1][j - 1] + a[i][j];
cout << sum[i][j] << " ";
}
cout << endl;
}
return 0;
}
713

被折叠的 条评论
为什么被折叠?



