前言

题解
这是2024年9月8号的拼多多机试题。
回头做了下,挺难的,没一道简单。
D. 小多的田
思路: 0-1 二维前缀和
因为格子的数必须要和v不互质,可以把是否互质的关系,转化为0-1矩阵。
那这题就转化为简单的0-1 二维前缀和模型了。
整个时间复杂度为 O ( h ∗ w ∗ q ) O(h*w*q) O(h∗w∗q)
#include <bits/stdc++.h>
using namespace std;
int solve(vector<vector<int>> &g, int v, int y, int x) {
int h = g.size(), w = g[0].size();
vector<vector<int>> pre(h + 1, vector<int>(w + 1, 0));
// 1. 构建二维前缀和
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
int gv = __gcd(g[i][j], v);
gv = gv > 1 ? 1 : 0;
pre[i + 1][j + 1] = pre[i + 1][j] + pre[i][j + 1] - pre[i][j] + gv;
}
}
// 2. 统计结果
int ans = 0;
for (int i = 0; i + y <= h; i++) {
for (int j = 0; j + x <= w; j++) {
// i, j, i + y - 1, j + w - 1
//
int z = pre[i + y][j + x] - pre[i][j + x] - pre[i + y][j] + pre[i][j];
//cout << "zzzz " << z << " expect " << (y * x) << endl;
if (z == y * x) {
ans++;
}
}
}
return ans;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
int t;
cin >> t;
while (t-- > 0) {
int h, w, q;
cin >> h >> w >> q;
vector<vector<int>> g(h, vector<int>(w));
for (int i = 0; i < h; i++) {
for (int j = 0; j< w; j++) {
cin >> g[i][j];
}
}
while (q-- > 0) {
int h1, w1;
int v;
cin >> h1 >> w1 >> v;
int r = solve(g, v, h1, w1);
cout << r << endl;
}
}
return 0;
}
写在最后

597

被折叠的 条评论
为什么被折叠?



