基于lstm 的GA 优化算法(matlab)

本文介绍了如何结合遗传算法(GA)优化长短期记忆网络(LSTM)模型,以解决时序预测问题。文章分别阐述了LSTM的基本原理,包括其在循环神经网络中的作用以及关键的输入门、输出门和遗忘门。同时,详细解释了遗传算法的工作机制,包括编码、初始化、适应度计算、选择、杂交和变异等步骤。最后,提供了在Matlab中实现GA优化LSTM的代码链接,包括与其他优化算法的比较。
摘要由CSDN通过智能技术生成

概述:

第一部分:关于lstm

第二部分:关于ga

第三部分:代码和结果展示

一、关于lstm

长短期记忆网络(Long short-term memory, LSTM)模型本质上是一种特定形式的循环神经网络(Recurrent Neural Network,简称RNN),是一种用于时序预测的深度神经网络,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。LSTM通过对采集数据进行时序预测,广泛适用于各类时序相关的预测问题,能够有效地利用时间维度进行合理的判断。

LSTM模型在RNN模型的基础上解决了RNN的短期记忆问题,使神经网络能够真正有效地利用长距离的时序信息。LSTM 神经网络为 RNN 添加了用于处理信息的有用记忆单元,每个记忆单元包括输入门、输出门和遗忘门。

在t时刻,LSTM神经网络定义的公式如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值