三角换元积分法

  我朋友曾经经历过奇葩面试,面试官直接给出一张白纸,要求用微积分计算圆的面积,他于是在白纸上画了一个圆,再分割为一个个小三角形,然后给出了结果。但是面试官不满意,认为这不是用微积分的知识。这种方式是小学课本上的方式,我觉得吧,虽然没用到大学微积分的知识,但是用了微积分的思想。我听完他的故事,瞬间明白了。面试官是要我朋友计算下面的积分:
2 ∫ − r r r 2 − x 2 d x 2\int_{-r}^{r} \sqrt{r^2-x^2}dx 2rrr2x2 dx
  直接用 r 2 r^2 r2比较难,先来个简单的,假设圆的半径为1,也就是计算下面这个不定积分:
∫ 1 − x 2 d x \int \sqrt{1-x^2}dx 1x2 dx
  直接这样算是算不出来的,需要用换元法,我们让 x = s i n   u x=sin \ u x=sin u,那么 d x = c o s   u   d u dx=cos \ u \ du dx=cos u du。所以有:
∫ 1 − x 2 d x = ∫ 1 − s i n 2   u c o s   u   d u = ∫ c o s 2   u c o s   u   d u \int \sqrt{1-x^2}dx=\int \sqrt{1-sin^2 \ u} cos \ u \ du=\int \sqrt{cos^2 \ u} cos \ u \ du 1x2 dx=1sin2 u cos u du=cos2 u cos u du
  到这一步,那就简单了啊。但是能直接开根号吗?我们确定定义域,因为计算的是半圆的不定积分,所以 x ∈ [ − 1 , 1 ] , ∴ u ∈ [ − π 2 , π 2 ] x \in [-1,1], \therefore u \in [-\frac{\pi}2,\frac{\pi}2] x[1,1],u[2π2π],那这就有了 c o s   u ≥ 1 cos \ u \ge 1 cos u1啊,所以直接脱去根号了,继续下去:
∫ c o s 2   u c o s   u   d u = ∫ c o s 2   u   d u \int \sqrt{cos^2 \ u} cos \ u \ du=\int cos^2 \ u \ du cos2 u cos u du=cos2 u du
  这个时候,就需要用到三角函数倍角公式了:
c o s   2 x = c o s 2   x − s i n 2   x = 2 c o s 2   x − 1 ⇒ c o s 2   x = c o s   2 x + 1 2 cos \ 2x = cos^2 \ x- sin^2 \ x=2cos^2 \ x -1\\ \Rightarrow cos^2 \ x=\frac{cos \ 2x +1}2 cos 2x=cos2 xsin2 x=2cos2 x1cos2 x=2cos 2x+1
  所以只能接着计算了啊:
∫ c o s 2   u   d u = s i n   2 u 4 + u 2 + C ∵ u = a r c s i n   x ∴ ∫ c o s 2   u   d u = s i n ( 2 a r c s i n   x ) 4 + a r c s i n   x 2 + C \int cos^2 \ u \ du =\frac{sin \ 2u}4+\frac{u}2+C\\ \because u=arcsin \ x\\ \therefore \int cos^2 \ u \ du =\frac{sin (2arcsin \ x)}4+\frac{arcsin \ x}2+C\\ cos2 u du=4sin 2u+2u+Cu=arcsin xcos2 u du=4sin(2arcsin x)+2arcsin x+C
  只剩下一个很丑的部分 s i n ( 2 a r c s i n   x ) sin (2arcsin \ x) sin(2arcsin x),这部分是可以优化的,有用到了三角函数的倍角公式。这次是正弦:
s i n   2 x = 2 s i n   x c o s   x sin \ 2x = 2 sin \ x cos \ x sin 2x=2sin xcos x
  所以对这一部分继续改写:
s i n ( 2 a r c s i n   x ) = 2 s i n   ( a r c s i n   x ) c o s   ( a r c s i n   x ) = 2 x c o s   ( a r c s i n   x ) = 2 x 1 − s i n 2 ( a r c s i n   x ) = 2 x 1 − x 2 sin (2arcsin \ x)=2sin \ (arcsin \ x) cos \ (arcsin \ x) \\ =2xcos \ (arcsin \ x) \\ =2x\sqrt{1-sin^2 (arcsin \ x)}\\ =2x\sqrt{1-x^2} sin(2arcsin x)=2sin (arcsin x)cos (arcsin x)=2xcos (arcsin x)=2x1sin2(arcsin x) =2x1x2
  所以最终结果出来了啊:
∫ 1 − x 2 d x = 2 x 1 − x 2 4 + a r c s i n   x 2 + C = x 1 − x 2 2 + a r c s i n   x 2 + C \int \sqrt{1-x^2}dx=\frac{2x\sqrt{1-x^2}}4+\frac{arcsin \ x}2+C\\ =\frac{x\sqrt{1-x^2}}2+\frac{arcsin \ x}2+C 1x2 dx=42x1x2 +2arcsin x+C=2x1x2 +2arcsin x+C
  把上述不定积分定为 F ( x ) F(x) F(x),那定积分就是 F ( 1 ) − F ( − 1 ) F(1)-F(-1) F(1)F(1)
F ( 1 ) = 1 1 − 1 2 + a r c s i n   1 2 + C = π 4 + C F ( − 1 ) = 1 1 − 1 2 + a r c s i n   − 1 2 + C = − π 4 + C 2 ∫ − 1 1 1 − x 2 d x = 2 [ F ( 1 ) − F ( − 1 ) ] = π F(1)=\frac{1\sqrt{1-1}}2+\frac{arcsin \ 1}2+C=\frac{\pi}4+C\\ F(-1)=\frac{1\sqrt{1-1}}2+\frac{arcsin \ -1}2+C=-\frac{\pi}4+C\\ 2\int^1_{-1} \sqrt{1-x^2}dx=2[F(1)-F(-1)]=\pi F(1)=2111 +2arcsin 1+C=4π+CF(1)=2111 +2arcsin 1+C=4π+C2111x2 dx=2[F(1)F(1)]=π
  哇,单位圆的面积就这么用微积分知识求出来了啊。如果换成通用的圆的面积也好办,就是先求以下不定积分:
x = r s i n   u , d x = r c o s   u d u ∫ r 2 − x 2 d x = ∫ r 2 c o s 2   u   d u = r 2 ∫ c o s 2   u   d u = r 2 s i n   2 u 4 + r 2 u 2 + C = 2 r 2 s i n   u 1 − s i n 2   u 4 + r 2 u 2 + C x=rsin \ u,dx = rcos\ u du\\ \int \sqrt{r^2-x^2}dx\\=\int r^2cos^2\ u\ du\\ =r^2\int cos^2\ u\ du\\ =\frac{r^2sin \ 2u}4+\frac{r^2u}2+C\\ =\frac{2r^2sin \ u\sqrt{1-sin^2 \ u}}4+\frac{r^2u}2+C x=rsin udx=rcos udur2x2 dx=r2cos2 u du=r2cos2 u du=4r2sin 2u+2r2u+C=42r2sin u1sin2 u +2r2u+C
  最后换回去:
u = a r c s i n x r ∫ r 2 − x 2 d x = 2 r 2 s i n   u 1 − s i n 2   u 4 + r 2 u 2 + C = 2 r 2 s i n ( a r c s i n x r ) 1 − s i n 2 ( a r c s i n x r ) 4 + r 2 a r c s i n x r 2 + C = 2 r 2 x r 1 − ( x r ) 2 4 + r 2 a r c s i n x r 2 + C = r x 1 − ( x r ) 2 2 + r 2 a r c s i n x r 2 + C u=arcsin\frac{x}r\\ \int \sqrt{r^2-x^2}dx=\frac{2r^2sin \ u\sqrt{1-sin^2 \ u}}4+\frac{r^2u}2+C\\ =\frac{2r^2sin (arcsin\frac{x}r)\sqrt{1-sin^2 (arcsin\frac{x}r)}}4+\frac{r^2arcsin\frac{x}r}2+C\\ =\frac{2r^2\frac{x}r\sqrt{1-(\frac{x}r)^2}}4+\frac{r^2arcsin\frac{x}r}2+C\\ =\frac{rx\sqrt{1-(\frac{x}r)^2}}2+\frac{r^2arcsin\frac{x}r}2+C u=arcsinrxr2x2 dx=42r2sin u1sin2 u +2r2u+C=42r2sin(arcsinrx)1sin2(arcsinrx +2r2arcsinrx+C=42r2rx1(rx)2 +2r2arcsinrx+C=2rx1(rx)2 +2r2arcsinrx+C
  最后定积分的牛顿莱布尼兹公式代进去:
F ( r ) = r 2 1 − ( r r ) 2 2 + r 2 a r c s i n r r 2 + C = r 2 1 − ( 1 ) 2 2 + r 2 a r c s i n   1 2 + C = 0 + r 2 a r c s i n   1 2 + C = r 2 π 4 + C F ( − r ) = r 2 1 − ( − r r ) 2 2 + r 2 a r c s i n − r r 2 + C = r 2 1 − ( − 1 ) 2 2 + r 2 a r c s i n   − 1 2 + C = 0 + r 2 a r c s i n   − 1 2 + C = − r 2 π 4 + C F(r)=\frac{r^2\sqrt{1-(\frac{r}r)^2}}2+\frac{r^2arcsin\frac{r}r}2+C\\ =\frac{r^2\sqrt{1-(1)^2}}2+\frac{r^2arcsin\ 1}2+C\\ =0+\frac{r^2arcsin\ 1}2+C=\frac{r^2\pi}4+C\\ F(-r)=\frac{r^2\sqrt{1-(\frac{-r}r)^2}}2+\frac{r^2arcsin\frac{-r}r}2+C\\ =\frac{r^2\sqrt{1-(-1)^2}}2+\frac{r^2arcsin\ -1}2+C\\ =0+\frac{r^2arcsin\ -1}2+C=-\frac{r^2\pi}4+C\\ F(r)=2r21(rr)2 +2r2arcsinrr+C=2r21(1)2 +2r2arcsin 1+C=0+2r2arcsin 1+C=4r2π+CF(r)=2r21(rr)2 +2r2arcsinrr+C=2r21(1)2 +2r2arcsin 1+C=0+2r2arcsin 1+C=4r2π+C
  所以半圆的面积就是:
∫ − r r r 2 − x 2 d x = F ( r ) − F ( − r ) = π r 2 2 \int^r_{-r} \sqrt{r^2-x^2}dx=F(r)-F(-r)=\frac{\pi r^2}2 rrr2x2 dx=F(r)F(r)=2πr2
  那么圆的面积就是:
2 ∫ − r r r 2 − x 2 d x = F ( r ) − F ( − r ) = π r 2 2\int^r_{-r} \sqrt{r^2-x^2}dx=F(r)-F(-r)=\pi r^2 2rrr2x2 dx=F(r)F(r)=πr2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值