任何关系都是一种双向选择

你和任何一个人的关系都是双向的,朋友关系,恋爱关系,合作关系,上下级关系,你选择了这个朋友,你选择了这个恋爱对象,你选择了这个老板,那你就得明白你的选择,当你们之间的关系发生波动时,你就得知道,怎么处理了,或者说怎么解决你们之间出现的问题,毕竟关系都是流动的,可能今天是朋友,每天是敌人,后天是陌生人,随之而来的是,你也得知道,如何改变你对每个人的态度,是朋友你就说朋友的话,是敌人你就说敌人的话,是陌生人你就不必说话,这也许是生存之道吧,理性的判断你究竟处于这个关系的什么位置,会帮助你做事情的时候给出一个正确的态度。其实我们根据没有必要去抱怨,当你有能力解决这一件事的时候,你就根本不会抱怨,你身边会出现什么样的人,其实早就注定好了,每一个人都是来成全你成为更好的你的,当你痛苦的时候,你就知道就成长了。同样的在我们工作时,我们也得知道自己得位置,你也没有必要去抱怨这个抱怨那个,如果你真的对这个公司,这个老板无语的话,你离开就是了,寻找下一段使你更开心的关系。希望每个宝宝都拥有开心快乐的日子鸭。

AI实战-仿真交易欺诈行为分类数据集分析预测实例(含10个源代码+419.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:10个代码,共49.42 KB;数据大小:1个文件共419.69 KB。 使用到的模块: pandas os sklearn.model_selection.train_test_split sklearn.ensemble.RandomForestClassifier sklearn.metrics.classification_report imblearn.over_sampling.SMOTE sklearn.linear_model.LogisticRegression sklearn.metrics.accuracy_score datetime.datetime sklearn.svm.SVC seaborn sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.compose.ColumnTransformer imblearn.pipeline.Pipeline numpy matplotlib.pyplot statsmodels.formula.api sklearn.model_selection.StratifiedKFold sklearn.metrics.roc_auc_score contextlib pickle sklearn.pipeline.Pipeline sklearn.preprocessing.OneHotEncoder sklearn.preprocessing.PowerTransformer torch torch.nn torch.nn.BCELoss torch.optim.Adam warnings scipy.stats.normaltest scipy.stats.chi2_contingency wolta.data_tools.col_types wolta.data_tools.seek_null wolta.data_tools.unique_amounts wolta.feature_tools.list_deletings wolta.data_tools.make_numerics wolta.data_tools.stat_sum wolta.data_tools.corr_analyse collections.Counter wolta.model_tools.compare_models wolta.model_tools.get_best_model sklearn.metrics.confusion_matrix sklearn.metrics.ConfusionMatrixDisplay sklearn.ensemble.GradientBoostingClassifier xgboost sklearn.model_selection.GridSearchCV sklearn.preprocessing.LabelEncoder sklearn.ensemble.StackingClassifier sklearn.metrics.roc_curve plotly.express wordcloud.WordCloud wordcloud.STOPWORDS
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值