摘要:多模态大语言模型(MLLMs)在细粒度的像素级理解任务上取得了显著的性能。 然而,所有这些工作都严重依赖于额外的组件,如视觉编码器(CLIP)、分割专家,导致系统复杂性高,限制了模型的扩展。 在这项工作中,我们的目标是探索一种高度简化的MLLM,而无需引入额外的组件。 我们的工作受到最近关于将单个变压器作为统一视觉语言模型(SAIL)设计的研究的启发,在这些研究中,这些工作在变压器中联合学习视觉标记和文本标记。 我们提出了Pixel-SAIL,这是一种用于像素级MLLM任务的单个变换器。 特别是,我们提出了对普通基线的三项技术改进。 首先,我们设计了一个可学习的上采样模块来细化视觉特征。 其次,我们提出了一种新颖的视觉提示注入策略,使单个变压器能够理解视觉提示输入,并受益于视觉提示嵌入和视觉标记的早期融合。 第三,我们引入了一种视觉专家蒸馏策略,以有效地增强单个变换器的细粒度特征提取能力。 此外,我们使用人工检查收集了一个全面的像素理解基准(PerBench)。 它包括三个任务:详细的物体描述、基于视觉提示的问答和视觉文本参考分割。 在四个引用分割基准、一个视觉提示基准和我们的PerBench上进行的广泛实验表明,我们的Pixel-SAIL通过更简单的管道实现了相当甚至更好的结果。 代码和模型将在https://github.com/magic-research/Sa2VA上发布。Huggingface链接:Paper page,论文链接:2504.10465
研究背景与目的
研究背景
随着人工智能技术的飞速发展,特别是大语言模型(LLMs)和多模态学习的融合,多模态大语言模型(MLLMs)逐渐成为自然语言处理(NLP)和计算机视觉(CV)领域的研究热点。这些模型能够在统一的框架下处理文本和视觉信息,从而在图像描述、视觉问答(VQA)、图像生成等任务上展现出强大的能力。然而,尽管现有的MLLMs在图像级别的理解任务上取得了显著成果,但在细粒度的像素级理解任务上,如引用分割和基于视觉提示的问答,仍然面临诸多挑战。
现有的像素级MLLMs通常依赖于复杂的系统架构,包括LLMs、CLIP等视觉编码器、对象标记提取模型和分割视觉骨干网络等。这些额外的组件不仅增加了系统的复杂性,还限制了模型的扩展性。此外,这些模型的整体性能往往依赖于单个子模块的性能,这可能导致次优结果。因此,探索一种更简单、更高效且性能优越的像素级MLLMs成为当前研究的重要方向。
研究目的
本文旨在提出一种高度简化的MLLM,即Pixel-SAIL,它仅使用单个变换器来处理像素级的多模态任务,而无需引入额外的视觉编码器或分割专家。通过借鉴最近关于将单个变换器作为统一视觉语言模型(SAIL)设计的研究,本文旨在展示单个变换器在像素级理解任务上的潜力。具体来说,本文的研究目标包括:
- 设计一个高效的像素级MLLM,即Pixel-SAIL,它仅使用单个变换器来处理文本和视觉信息。
- 提出三项技术改进,包括可学习的上采样模块、新颖的视觉提示注入策略和视觉专家蒸馏策略,以提升Pixel-SAIL的性能。
- 构建一个全面的像素理解基准(PerBench),用于评估Pixel-SAIL在细粒度像素级理解任务上的性能。
- 通过在多个基准数据集上的实验,验证Pixel-SAIL的有效性和通用性。
研究方法
模型设计
本文提出了Pixel-SAIL模型,它是一种用于像素级MLLM任务的单个变换器。Pixel-SAIL基于SAIL的设计理念,联合学习视觉标记和文本标记,而无需额外的视觉编码器。为了提升Pixel-SAIL的性能,本文提出了以下三项技术改进:
- 可学习的上采样模块:为了细化视觉特征,本文设计了一个可学习的上采样模块。该模块通过转置二维卷积和深度卷积的组合,将低分辨率的视觉特征上采样到高分辨率,从而提升了分割质量。
- 新颖的视觉提示注入策略:为了使单个变换器能够理解视觉提示输入,本文提出了一种新颖的视觉提示注入策略。该策略将视觉提示映射为特殊的文本标记,并将其与视觉标记结合,从而在早期阶段实现视觉提示嵌入和视觉标记的融合。
- 视觉专家蒸馏策略:为了增强单个变换器的细粒度特征提取能力,本文引入了一种视觉专家蒸馏策略。该策略利用分割专家生成的掩码特征来蒸馏单个变换器,从而在优化对象细节的同时保持其原有的指令跟随能力。
基准数据集构建
为了全面评估Pixel-SAIL的性能,本文构建了一个全面的像素理解基准(PerBench)。PerBench包括三个任务:详细的物体描述、基于视觉提示的问答和视觉文本参考分割。这些数据集通过人工检查和筛选,确保了数据的质量和准确性。
研究结果
基准数据集上的性能
本文在多个基准数据集上对Pixel-SAIL进行了广泛的实验评估。实验结果表明,Pixel-SAIL在引用分割、视觉提示理解和详细物体描述等任务上均取得了显著的性能提升。具体来说,Pixel-SAIL在RefCOCO+、RefCOCOg和gRefCOCO等引用分割基准数据集上实现了优于现有方法的性能。此外,在PerBench上,Pixel-SAIL在详细物体描述、基于视觉提示的问答和视觉文本参考分割等任务上也取得了令人瞩目的结果。
与现有方法的比较
本文还将Pixel-SAIL与现有的像素级MLLMs进行了比较。实验结果表明,尽管Pixel-SAIL采用了更简单的架构,但它在多个基准数据集上的性能仍然优于或相当于现有的复杂模型。这一结果充分验证了Pixel-SAIL的有效性和通用性。
研究局限
尽管Pixel-SAIL在多个基准数据集上取得了显著的性能提升,但本文也认识到该模型存在一些局限性。首先,Pixel-SAIL目前仅使用了有限的训练数据(约170万张图像和对应的视觉提示),这限制了其性能的进一步提升。其次,Pixel-SAIL在处理某些复杂场景和对象时仍然面临挑战,例如在处理具有复杂形状和纹理的对象时可能会出现分割不准确的情况。此外,Pixel-SAIL在处理长文本描述和复杂视觉提示时也可能存在性能下降的问题。
未来研究方向
针对Pixel-SAIL的局限性,本文提出了以下未来研究方向:
- 扩大训练数据集:收集更多的图像和对应的视觉提示来训练Pixel-SAIL,以进一步提升其性能。特别是,可以收集具有复杂形状和纹理的对象图像以及包含长文本描述和复杂视觉提示的数据集。
- 改进模型架构:探索更先进的模型架构来提升Pixel-SAIL处理复杂场景和对象的能力。例如,可以引入注意力机制来增强模型对关键区域和对象的关注度。
- 结合其他技术:将Pixel-SAIL与其他技术相结合,如强化学习、知识蒸馏等,以进一步提升其性能。例如,可以利用强化学习来优化Pixel-SAIL的决策过程,或者利用知识蒸馏来将分割专家的知识传递给Pixel-SAIL。
- 拓展应用场景:探索Pixel-SAIL在更多应用场景中的潜力,如自动驾驶、医疗影像分析等。通过拓展应用场景,可以进一步验证Pixel-SAIL的有效性和通用性,并推动其在实际问题中的应用。