# 性能优化
JVM的性能优化可以分为代码层面和非代码层面。
在代码层面,大家可以结合字节码指令进行优化,比如一个循环语句,可以将循环不相关的代码提取到循环体之外,这样在字节码层面就不需要重复执行这些代码了。
在非代码层面,一般情况可以从内存、gc以及cpu占用率等方面进行优化。
注意,JVM调优是一个漫长和复杂的过程,而在很多情况下,JVM是不需要优化的,因为JVM本身已经做了很多的内部优化操作。
那今天我们就从内存、gc以及cpu这3个方面和大家一起探讨一下JVM的优化,但是大家要注意的是不要为了调优和调优。
4.1 内存
4.1.1 内存分配
正常情况下不需要设置,那如果是促销或者秒杀的场景呢?
每台机器配置2c4G,以每秒3000笔订单为例,整个过程持续60秒
4.1.2 内存溢出(OOM)
一般会有两个原因:
(1)大并发情况下
(2)内存泄露导致内存溢出
4.1.2.1 大并发[秒杀]
浏览器缓存、本地缓存、验证码
CDN静态资源服务器
集群+负载均衡
动静态资源分离、限流[基于令牌桶、漏桶算法]
应用级别缓存、接口防刷限流、队列、Tomcat性能优化
异步消息中间件
Redis热点数据对象缓存
分布式锁、数据库锁
5分钟之内没有支付,取消订单、恢复库存等
4.1.2.2 内存泄露导致内存溢出
ThreadLocal引起的内存泄露,最终导致内存溢出
public class TLController { @RequestMapping(value = "/tl") public String tl(HttpServletRequest request) { ThreadLocal<Byte[]> tl = new ThreadLocal<Byte[]>(); // 1MB tl.set(new Byte[1024*1024]); return "ok"; } }
(1)上传到阿里云服务器
jvm-case-0.0.1-SNAPSHOT.jar
(2)启动
java -jar -Xms1000M -Xmx1000M -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=jvm.hprof jvm-case-0.0.1-SNAPSHOT.jar
(3)使用jmeter模拟10000次并发
39.100.39.63:8080/tl
(4)top命令查看
top
top -Hp PID
(5)jstack查看线程情况,发现没有死锁或者IO阻塞的情况
jstack PID
java -jar arthas.jar ---> thread
(6)查看堆内存的使用,发现堆内存的使用率已经高达88.95%
jmap -heap PID
java -jar arthas.jar ---> dashboard
(7)此时可以大体判断出来,发生了内存泄露从而导致的内存溢出,那怎么排查呢?
jmap -histo:live PID | more
获取到jvm.hprof文件,上传到指定的工具分析,比如heaphero.io
4.2 GC
这里以G1垃圾收集器调优为例
4.2.1 是否选用G1
官网
:https://docs.oracle.com/javase/8/docs/technotes/guides/vm/G1.html#use_cases
(1)50%以上的堆被存活对象占用
(2)对象分配和晋升的速度变化非常大
(3)垃圾回收时间比较长
4.2.2 G1调优
(1)使用G1GC垃圾收集器: -XX:+UseG1GC
修改配置参数,获取到gc日志,使用GCViewer分析吞吐量和响应时间
Throughput Min Pause Max Pause Avg Pause GC count
99.16% 0.00016s 0.0137s 0.00559s 12
(2)调整内存大小再获取gc日志分析
-XX:MetaspaceSize=100M
-Xms300M
-Xmx300M
比如设置堆内存的大小,获取到gc日志,使用GCViewer分析吞吐量和响应时间
Throughput Min Pause Max Pause Avg Pause GC count
98.89% 0.00021s 0.01531s 0.00538s 12
(3)调整最大停顿时间
-XX:MaxGCPauseMillis=200 设置最大GC停顿时间指标
比如设置最大停顿时间,获取到gc日志,使用GCViewer分析吞吐量和响应时间
Throughput Min Pause Max Pause Avg Pause GC count
98.96% 0.00015s 0.01737s 0.00574s 12
(4)启动并发GC时堆内存占用百分比
-XX:InitiatingHeapOccupancyPercent=45
G1用它来触发并发GC周期,基于整个堆的使用率,而不只是某一代内存的使用比例。值为 0 则表示“一直执行GC循环)'. 默认值为 45 (例如, 全部的 45% 或者使用了45%).
比如设置该百分比参数,获取到gc日志,使用GCViewer分析吞吐量和响应时间
Throughput Min Pause Max Pause Avg Pause GC count
98.11% 0.00406s 0.00532s 0.00469s 12
4.2.3 G1调优最佳实战
官网
:https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc_tuning.html#recommendations)
(1)不要手动设置新生代和老年代的大小,只要设置整个堆的大小
why:https://blogs.oracle.com/poonam/increased-heap-usage-with-g1-gc
G1收集器在运行过程中,会自己调整新生代和老年代的大小 其实是通过adapt代的大小来调整对象晋升的速度和年龄,从而达到为收集器设置的暂停时间目标 如果手动设置了大小就意味着放弃了G1的自动调优
(2)不断调优暂停时间目标
一般情况下这个值设置到100ms或者200ms都是可以的(不同情况下会不一样),但如果设置成50ms就不太合理。暂停时间设置的太短,就会导致出现G1跟不上垃圾产生的速度。最终退化成Full GC。所以对这个参数的调优是一个持续的过程,逐步调整到最佳状态。暂停时间只是一个目标,并不能总是得到满足。
(3)使用-XX:ConcGCThreads=n来增加标记线程的数量
IHOP如果阀值设置过高,可能会遇到转移失败的风险,比如对象进行转移时空间不足。如果阀值设置过低,就会使标记周期运行过于频繁,并且有可能混合收集期回收不到空间。 IHOP值如果设置合理,但是在并发周期时间过长时,可以尝试增加并发线程数,调高ConcGCThreads。
(4)MixedGC调优
-XX:InitiatingHeapOccupancyPercent -XX:G1MixedGCLiveThresholdPercent -XX:G1MixedGCCountTarger -XX:G1OldCSetRegionThresholdPercent
(5)适当增加堆内存大小
(6)不正常的Full GC
有时候会发现系统刚刚启动的时候,就会发生一次Full GC,但是老年代空间比较充足,一般是由Metaspace区域引起的。可以通过MetaspaceSize适当增加其大家,比如256M。