JVM成神之路(十二) -- Jvm性能优化指南

本文详细介绍了JVM性能优化,包括代码层面和非代码层面。在内存优化中,讨论了内存分配和内存溢出的处理,特别是针对大并发场景的秒杀优化策略。在GC调优部分,以G1垃圾收集器为例,讲解了如何选择和调整G1,以及最佳实践。内容涵盖了设置内存大小、调整GC停顿时间和并发线程数等关键参数,提供了全面的调优指导。
摘要由CSDN通过智能技术生成

# 性能优化

JVM的性能优化可以分为代码层面和非代码层面。

在代码层面,大家可以结合字节码指令进行优化,比如一个循环语句,可以将循环不相关的代码提取到循环体之外,这样在字节码层面就不需要重复执行这些代码了。

在非代码层面,一般情况可以从内存、gc以及cpu占用率等方面进行优化。

注意,JVM调优是一个漫长和复杂的过程,而在很多情况下,JVM是不需要优化的,因为JVM本身已经做了很多的内部优化操作。

那今天我们就从内存、gc以及cpu这3个方面和大家一起探讨一下JVM的优化,但是大家要注意的是不要为了调优和调优

4.1 内存

4.1.1 内存分配

正常情况下不需要设置,那如果是促销或者秒杀的场景呢?

每台机器配置2c4G,以每秒3000笔订单为例,整个过程持续60秒

在这里插入图片描述

4.1.2 内存溢出(OOM)

一般会有两个原因:

(1)大并发情况下

(2)内存泄露导致内存溢出

4.1.2.1 大并发[秒杀]

浏览器缓存、本地缓存、验证码

CDN静态资源服务器

集群+负载均衡

动静态资源分离、限流[基于令牌桶、漏桶算法]

应用级别缓存、接口防刷限流、队列、Tomcat性能优化

异步消息中间件

Redis热点数据对象缓存

分布式锁、数据库锁

5分钟之内没有支付,取消订单、恢复库存等

4.1.2.2 内存泄露导致内存溢出

ThreadLocal引起的内存泄露,最终导致内存溢出

public class TLController {
 @RequestMapping(value = "/tl")
 public String tl(HttpServletRequest request) {
     ThreadLocal<Byte[]> tl = new ThreadLocal<Byte[]>();
     // 1MB
     tl.set(new Byte[1024*1024]);
     return "ok";
 }
}

(1)上传到阿里云服务器

jvm-case-0.0.1-SNAPSHOT.jar

(2)启动

java -jar -Xms1000M -Xmx1000M -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=jvm.hprof  jvm-case-0.0.1-SNAPSHOT.jar

(3)使用jmeter模拟10000次并发

39.100.39.63:8080/tl

(4)top命令查看

top
top -Hp PID

(5)jstack查看线程情况,发现没有死锁或者IO阻塞的情况

jstack PID
java -jar arthas.jar   --->   thread

(6)查看堆内存的使用,发现堆内存的使用率已经高达88.95%

jmap -heap PID
java -jar arthas.jar   --->   dashboard

(7)此时可以大体判断出来,发生了内存泄露从而导致的内存溢出,那怎么排查呢?

jmap -histo:live PID | more
获取到jvm.hprof文件,上传到指定的工具分析,比如heaphero.io

4.2 GC

这里以G1垃圾收集器调优为例

4.2.1 是否选用G1

官网:https://docs.oracle.com/javase/8/docs/technotes/guides/vm/G1.html#use_cases

(1)50%以上的堆被存活对象占用
(2)对象分配和晋升的速度变化非常大
(3)垃圾回收时间比较长

4.2.2 G1调优

(1)使用G1GC垃圾收集器: -XX:+UseG1GC

修改配置参数,获取到gc日志,使用GCViewer分析吞吐量和响应时间

Throughput       Min Pause       Max Pause      Avg Pause       GC count
  99.16%         0.00016s         0.0137s        0.00559s          12 

(2)调整内存大小再获取gc日志分析

-XX:MetaspaceSize=100M
-Xms300M
-Xmx300M

比如设置堆内存的大小,获取到gc日志,使用GCViewer分析吞吐量和响应时间

Throughput       Min Pause       Max Pause      Avg Pause       GC count
  98.89%          0.00021s        0.01531s       0.00538s           12 

(3)调整最大停顿时间

-XX:MaxGCPauseMillis=200    设置最大GC停顿时间指标

比如设置最大停顿时间,获取到gc日志,使用GCViewer分析吞吐量和响应时间

Throughput       Min Pause       Max Pause      Avg Pause       GC count
  98.96%          0.00015s        0.01737s       0.00574s          12 

(4)启动并发GC时堆内存占用百分比

-XX:InitiatingHeapOccupancyPercent=45 
G1用它来触发并发GC周期,基于整个堆的使用率,而不只是某一代内存的使用比例。值为 0 则表示“一直执行GC循环)'. 默认值为 45 (例如, 全部的 45% 或者使用了45%).

比如设置该百分比参数,获取到gc日志,使用GCViewer分析吞吐量和响应时间

Throughput       Min Pause       Max Pause      Avg Pause       GC count
  98.11%          0.00406s        0.00532s       0.00469s          12 

4.2.3 G1调优最佳实战

官网:https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/g1_gc_tuning.html#recommendations)

(1)不要手动设置新生代和老年代的大小,只要设置整个堆的大小

why:https://blogs.oracle.com/poonam/increased-heap-usage-with-g1-gc

G1收集器在运行过程中,会自己调整新生代和老年代的大小
其实是通过adapt代的大小来调整对象晋升的速度和年龄,从而达到为收集器设置的暂停时间目标
如果手动设置了大小就意味着放弃了G1的自动调优

(2)不断调优暂停时间目标

一般情况下这个值设置到100ms或者200ms都是可以的(不同情况下会不一样),但如果设置成50ms就不太合理。暂停时间设置的太短,就会导致出现G1跟不上垃圾产生的速度。最终退化成Full GC。所以对这个参数的调优是一个持续的过程,逐步调整到最佳状态。暂停时间只是一个目标,并不能总是得到满足。

(3)使用-XX:ConcGCThreads=n来增加标记线程的数量

IHOP如果阀值设置过高,可能会遇到转移失败的风险,比如对象进行转移时空间不足。如果阀值设置过低,就会使标记周期运行过于频繁,并且有可能混合收集期回收不到空间。 
IHOP值如果设置合理,但是在并发周期时间过长时,可以尝试增加并发线程数,调高ConcGCThreads。

(4)MixedGC调优

-XX:InitiatingHeapOccupancyPercent
-XX:G1MixedGCLiveThresholdPercent
-XX:G1MixedGCCountTarger
-XX:G1OldCSetRegionThresholdPercent

(5)适当增加堆内存大小

(6)不正常的Full GC

有时候会发现系统刚刚启动的时候,就会发生一次Full GC,但是老年代空间比较充足,一般是由Metaspace区域引起的。可以通过MetaspaceSize适当增加其大家,比如256M。

4.3 JVM性能优化指南

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值