python代码实现关于SVD矩阵的分解

假设有一个矩阵 A,其维度为 m × n,其中 m 表示行数,n 表示列数。现在我们对矩阵 A 进行奇异值分解(Singular Value Decomposition, SVD),得到三个矩阵 U、Σ、V^T,满足以下关系:A = UΣV^T。请问:

1.矩阵 U 的维度是多少?Σ 的维度是多少?V 的维度是多少?

2.SVD 分解有什么应用领域和意义?

下面用python代码求解:

问题1:矩阵 U,Σ, V 的维度各是多少?

【代码如下】

import numpy as np

# 定义矩阵 A

A = np.array([[1, 2, 3], [4, 5, 6]])

# 奇异值分解

U, sigma, VT = np.linalg.svd(A)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值