假设有一个矩阵 A,其维度为 m × n,其中 m 表示行数,n 表示列数。现在我们对矩阵 A 进行奇异值分解(Singular Value Decomposition, SVD),得到三个矩阵 U、Σ、V^T,满足以下关系:A = UΣV^T。请问:
1.矩阵 U 的维度是多少?Σ 的维度是多少?V 的维度是多少?
2.SVD 分解有什么应用领域和意义?
下面用python代码求解:
问题1:矩阵 U,Σ, V 的维度各是多少?
【代码如下】
import numpy as np
# 定义矩阵 A
A = np.array([[1, 2, 3], [4, 5, 6]])
# 奇异值分解
U, sigma, VT = np.linalg.svd(A)

最低0.47元/天 解锁文章
839

被折叠的 条评论
为什么被折叠?



