主要原因是涉及到序列的东西都不好做。CV那边搞视频一样头疼结果上不去。
而且另外一方面,个人理解cv目前做的东西更多的是extraction和generation,understanding的很多好,大量论文集中在前两点。如果设计understanding更多的是image caption和inpainting那些。
而且,个人理解understanding得到的东西必须是不能通过边缘一步一步不全得到的(比如style-transfer在我看来更像step-by-step generation的过程)。
CV的路线好在extraction和generation带来的是优质的classification质量和快速的应用可能性,这就能代理工业界的重视和资金。而NLP的任务因为很难通过单纯的extraction,而NLP的生成任务(NLG)本质上也是离开understanding基本做不了东西。
顺便提一下,国内NLP也在迅速发展,可以关注一下学术范这个网站上的学者,和相关研究方向什么的:Nlp Indi Dharmayanti-学者概述 (xueshufan.com)
其实,NLP和CV都已经是很大的领域了,很难总体上说哪个更难。NLP领域中也很多比较容易的问题,CV领域也有很多很难的问题。
直观感受上&#x

NLP领域发展相对较慢的原因包括序列处理的复杂性、理解和生成的挑战,以及工业界应用的标准化难题。尽管NLP在拼音输入法等场景中有广泛应用,但预期过高和无法标准化使得它给人不成熟的感觉。与CV相比,NLP的extraction和generation任务更复杂,而CV在extraction和classification上的成功吸引了更多关注和资源。
最低0.47元/天 解锁文章
35

被折叠的 条评论
为什么被折叠?



