为什么相比于计算机视觉(cv),自然语言处理(nlp)领域的发展要缓慢?

NLP领域发展相对较慢的原因包括序列处理的复杂性、理解和生成的挑战,以及工业界应用的标准化难题。尽管NLP在拼音输入法等场景中有广泛应用,但预期过高和无法标准化使得它给人不成熟的感觉。与CV相比,NLP的extraction和generation任务更复杂,而CV在extraction和classification上的成功吸引了更多关注和资源。
摘要由CSDN通过智能技术生成

主要原因是涉及到序列的东西都不好做。CV那边搞视频一样头疼结果上不去。

而且另外一方面,个人理解cv目前做的东西更多的是extraction和generation,understanding的很多好,大量论文集中在前两点。如果设计understanding更多的是image caption和inpainting那些。

而且,个人理解understanding得到的东西必须是不能通过边缘一步一步不全得到的(比如style-transfer在我看来更像step-by-step generation的过程)。

CV的路线好在extraction和generation带来的是优质的classification质量和快速的应用可能性,这就能代理工业界的重视和资金。而NLP的任务因为很难通过单纯的extraction,而NLP的生成任务(NLG)本质上也是离开understanding基本做不了东西。

顺便提一下,国内NLP也在迅速发展,可以关注一下学术范这个网站上的学者,和相关研究方向什么的:Nlp Indi Dharmayanti-学者概述 (xueshufan.com)

其实,NLP和CV都已经是很大的领域了,很难总体上说哪个更难。NLP领域中也很多比较容易的问题,CV领域也有很多很难的问题。

直观感受上&#x

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>