结构体大小的计算方法(sizeof(struct s))

文章详细解释了结构体在内存中如何进行对齐,包括四个对齐规则,并通过三个具体例子展示了计算结构体大小的过程。在VS中,默认对齐数为8,而在Linux下,对齐数为成员自身大小。通过这些规则,可以确定结构体占用的总内存大小。

结构体大小的计算方法

先举三个例子

栗子1:

struct s1
{
	char c1;
	int i ;
	char c2;
};

printf("%d\n",sizeof(struct s1));

栗子2:

struct s2
{
	double d;
	char c ;
	int i;
};

printf("%d\n",sizeof(struct s2));

栗子3:

struct s3
{
	char c1;
	struct s2 s2 ;
	int j;
};

printf("%d\n",sizeof(struct s3));

解决此题的关键是:结构体内存对齐

对齐规则:

1、第一个成员在与结构体变量偏移量为0的地址处;

2、其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数与该成员大小的较小值
在vs中,默认对齐数是8
Linux环境下没有默认对齐数,对齐数为成员自身大小

3、结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

4、如果嵌套了结构体的情况(例3),嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

栗子1解答:

struct s1
{
	char c1;
	int i ;
	char c2;
};

printf("%d\n",sizeof(struct s1));

由规则1和2可得
c1:min(1,8)= 1
i : min(4,8)= 4
c2 :min(1,8)=1
存储位置如图所示:

由图可知当前结构体已占用9字节大小,跟据规则3可得,结构体总大小为4*3=12(12 > 9)

在这里插入图片描述

栗子2解答:

struct s2
{
	double d;
	char c ;
	int i;
};

printf("%d\n",sizeof(struct s2));

由规则1和2可得
d:min(8,8)= 8
c :min(1,8)=1
i : min(4,8)= 4
存储位置如图所示:
在这里插入图片描述
由图可知当前结构体已占用16字节大小,跟据规则3可得,结构体总大小为8*2=16
在这里插入图片描述
栗子3解答:

struct s3
{
	char c1;
	struct s2 s2 ;
	int j;
};

printf("%d\n",sizeof(struct s3));

由规则1,2和 3 可得
c1 :min(1,8)=1

struct s2中
d:min(8,8)= 8
c :min(1,8)=1
i : min(4,8)= 4
得s2最大对齐数为8,所以s2数据从位置8开始存储

j: min(4,8)= 4
存储位置如图所示:
在这里插入图片描述
由图可知当前结构体已占用28字节大小,跟据规则3可得,结构体总大小为8*4=32(32 > 28)
在这里插入图片描述

<think>好的,我现在需要帮用户整理关于单链表操作实现的心得体会,包括算分析、改进方和经验教训。首先,我得回忆一下单链表的基本操作,比如入、删除查找等,以及它们的实现步骤。 用户提到了算分析,我需要分析这些操作的时间复杂度。比如,入和删除在已知节点的情况下是$O(1)$,但如果需要先查找,那就是$O(n)$。这点很重要,要明确区分不同情况下的性能差异。 接下来是改进设想。用户可能希望优化单链表的某些操作。比如,可以添加尾指针来提升尾部入的效率,这样就不用每次都遍历整个链表。另外,使用双向链表或者循环链表也是常见的改进方,但用户问的是单链表,可能需要说明这些扩展结构的不同应用场景。 经验教训部分,用户可能遇到了指针操作的问题,比如内存泄漏或者野指针。这时候需要强调正确管理指针的重要性,以及如何通过工具或测试来避免这些问题。比如,使用Valgrind检测内存泄漏,或者编写测试用例覆盖边界情况。 然后,我需要参考用户提供的引用内容。引用[1]提到链表操作和存储结构,这和用户的问题直接相关,应该引用到心得中。引用[3]涉及计算机系统知识,可能可以联系到内存管理或程序优化方面,但需要自然衔接,不能强行入。 生成相关问题的时候,要考虑用户可能进一步想知道的内容,比如单链表和双向链表的比较,或者如何测试链表代码的有效性。这些问题应该与用户的问题相关,并且帮助深化他们的理解。 最后,要确保整个回答结构清晰,分点列出,使用正确的LaTeX格式,并且引用标记自然。注意避免使用Markdown,保持口语化但专业,同时符合用户的中文要求。</think>### 单链表操作实现心得与算分析 在实现单链表操作时,核心在于理解其动态内存管理和指针操作的特性。以下是具体分析: #### 1. **算复杂度分析** - **入/删除操作**:在已知节点位置时,时间复杂度为$O(1)$(如头部入);若需遍历查找目标节点(如按值删除),则时间复杂度为$O(n)$[^3]。 - **查找操作**:必须从头节点开始遍历,时间复杂度为$O(n)$。 - **内存管理**:动态分配节点需注意内存泄漏问题,删除节点后需及时释放内存[^1]。 #### 2. **改进方** - **尾指针优化**:添加尾指针(`tail`)可提升尾部入效率,使尾操作从$O(n)$优化为$O(1)$。 - **虚拟头节点**:引入虚拟头节点(`dummyHead`)可简化边界条件处理(如空链表或头节点操作)。 - **缓存长度信息**:维护链表长度变量`size`,避免频繁遍历统计长度。 - **双向链表扩展**:若需要频繁反向操作,可改用双向链表(但需额外空间存储前驱指针)[^1]。 #### 3. **经验教训** - **指针操作陷阱**:未正确处理指针指向可能导致链表断裂(如删除节点时未更新前驱节点的`next`)。 - **内存泄漏**:动态分配的节点未释放会造成内存泄漏,可通过工具如Valgrind检测[^3]。 - **边界测试**:需覆盖空链表、单节点链表、头尾节点操作等场景,例如: ```c // 示例:删除头节点时的错误处理 if (head != NULL) { Node* temp = head; head = head->next; free(temp); } ``` - **代码可读性**:合理封装函数(如`createNode()`, `insertAfter()`),避免重复代码[^1]。 #### 4. **实际应用场景** - 适用于频繁入/删除且数据量动态变化的场景(如实现队列、LRU缓存淘汰算)。 - 链式存储结构在操作系统文件系统、内存管理中有广泛应用[^3]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值