二分【2】快速幂 单峰序列

目录

快速幂

递归写法(a^b%m)

迭代写法 

 单峰序列


快速幂

a^n

n为奇数,转化为a*a^(n-1)

n为偶数,转化为计算b=a^(n/2),在计算b^2

a^b%m)

递归写法(a^b%m)

#include <iostream>
#include <vector>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll a,b,m;
ll kuaisumi(ll a,ll b,ll m)
{	 if(b==0) {return 1; }
	if(b%2==1) {return (a%m)*kuaisumi(a,b-1,m)%m;}//b奇数
	else
	{
		ll A=kuaisumi(a,b/2,m)%m;return A*A%m;
	 } 
	 //缺一个递归出口:

	
	 
}

int main()
{
	scanf("%lld %lld %lld",&a,&b,&m);
	printf("%lld",kuaisumi(a,b,m));
	
}
#include <iostream>
#include <vector>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll a,b,m;
ll kuaisumi(ll a,ll b,ll m)
{	 if(b==0) {return 1; }
	if(b%2==1) {return (a%m)*kuaisumi(a,b-1,m)%m;}//b奇数
	else
	{
		ll A=kuaisumi(a,b/2,m)%m;return A*A%m;
	 } 
	 //缺一个递归出口:

	
	 
}

int main()
{
	scanf("%lld %lld %lld",&a,&b,&m);
	printf("%lld",kuaisumi(a,b,m));
	
}

迭代写法 

#include <iostream>
#include <vector>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll a,b,m;

int main()
{
	scanf("%lld %lld %lld",&a,&b,&m);
	ll ans=1;
	while(b>0)
	{if(b&1) {ans=ans*a%m;b--;}
	else {b/=2;a=a*a%m;
	}
	 } 
	printf("%lld",ans);
	
}

 单峰序列

左增右减,找峰顶

#include <iostream>
#include <vector>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=100001;int n,num[N]; 
int bis(int a[],int left,int right)
{
while(left<right)
{
	int mid=left+(right-left)/2;
	if(a[mid]>a[mid-1])
	{
		if(a[mid]>a[mid+1]) return mid;
		else left=mid+1;
	}
	else right=mid-1;

}
return left;	
}


int main()
{
	scanf("%d",&n);for(int i=0;i<n;i++) scanf("%d",&num[i]);
	
	printf("%d",bis(num,0,n-1));
}

预告:二分【3】 旋转数组 

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值