快速MD5强碰撞生成器:fastcoll

问:可以制作两个具有相同哈希值的不同文件吗?
答:可以。

在密码学中,哈希函数将输入数据转换成固定长度的字符串。但由于输入的无限性和输出的固定性,不可避免地会有不同输入产生相同的哈希值,这就是碰撞。

哈希碰撞的原理

哈希函数的理想特性是:即使输入有细微变化,输出也会显著不同。然而,碰撞问题不可避免。MD5作为一种哈希算法,已经被证明存在严重的碰撞漏洞。可以找到任意两个不同的输入,使它们的哈希值相同。

fastcoll原理

fastcoll是一款专用工具,旨在快速找到两个具有相同MD5哈希值的不同文件。它利用MD5算法的特定弱点,通过数学运算找到不同输入,使它们共享相同的哈希前缀,从而实现强碰撞。

它使用了一种优化算法,能够在短时间内生成两个不同的消息,确保它们的MD5哈希相同。这是通过深入分析MD5的结构和特性,找出可以操控的部分来实现的。

fastcoll使用

制作一个简易的文本文件

![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/29075f9ad51e4402b1d811e5dc23f043.png)

生成文件

然后只需要将这个文件拖入到fastcoll中
请添加图片描述

验证文件的md5

可以发现文件的md5值都是一样的
在这里插入图片描述

文件差异性

两个文件的sha1不同,因为他们的哈希校验算法不同,可以证明文件内容不同。或者可以根据文件的十六进制值对比
在这里插入图片描述
可以发现文件的内容是不同的

下载地址:http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5.exe.zip

opencv是一个开源的计算机视觉库,opencv2.4.9是其中的一个版本。在opencv2.4.9中,有一个模块叫做stitching,用于图像拼接。 图像拼接是将多张图像按照一定的顺序和方式进行合并,形成一张更大视野覆盖范围的图像。拼接的过程需要解决图像间的重叠区域匹配、图像变换与叠加等问题。 在opencv2.4.9的stitching模块中,主要有以下几个重要的类: 1. Stitcher类:拼接器类,用于执行拼接的主要操作。它提供了一系列的方法,如设置拼接的模式、添加要拼接的图像等。 2. FeaturesFinder类:特征点检测类,用于在图像中寻找特征点。该类利用SIFT、SURF等算法来检测图像中的关键点,以便进行匹配。 3. FeaturesMatcher类:特征点匹配类,用于对图像中的特征点进行匹配。该类使用KNN算法进行特征点的匹配,并利用RANSAC算法进一步筛选特征点,剔除误匹配。 4. Estimator类:变换估计类,用于估计图像间的变换参数。该类可以通过特征点的对应关系,计算图像间的旋转矩阵、平移矩阵等变换参数。 5. Blender类:图像融合类,用于将拼接后的图像进行融合。该类可以进行多种融合方式,如线性融合、多频融合等。 通过以上的类和方法,opencv2.4.9的stitching模块能够完成图像拼接的过程。整个过程包括特征点检测、特征点匹配、变换参数估计和图像融合等步骤。 需要指出的是,本文只是对opencv2.4.9的stitching模块进行了初步的介绍,具体的源码分析需要深入研究。整个源码工程庞大,包含很多细节和算法,需要对计算机视觉和图像处理有较深入的理解才能进行分析和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值