作业要求
- [基础要求] 基于Jupyter Notebook 完成以下实验一、实验二、实验三;
- [重点要求] 修改以下示例代码,以测试不同知识点。在博客上写出你:
- 修改的代码、
- 修改的愿意(意图)
- 代码运行的结果
- 你的结论
实验一:Series对象的应用
实验要求:
- 定义一个Series对象,包含5个整数数据;
- 访问、修改Series对象中的数据;
- 打印Series对象;
- 对Series对象进行计算,如求和、求平均值等。
示例代码:
import pandas as pd
# 定义一个Series对象
s = pd.Series([10, 20, 30, 40, 50])
# 访问Series对象中的数据
print(s[0]) # 输出第一个元素
print(s[2:4]) # 输出第3个到第4个元素
# 修改Series对象中的数据
s[1] = 25
# 打印Series对象
print(s)
# 对Series对象进行计算
print(s.sum()) # 求和
print(s.mean()) # 求平均值
- 修改代码:增加字符串型、列表型的数据,将Series对象中的数据类型变为多个类型数据混合;
-
import pandas as pd # 定义一个Series对象 s = pd.Series(['hello', 20, 30, 40, 50]) # 访问Series对象中的数据 print(s[0]) # 输出第一个元素 print(s[2:4]) # 输出第3个到第4个元素 # 修改Series对象中的数据 s[1] = [2,3,5] # 打印Series对象 print(s)
- 修改意图:测试Pandas中对于混合类型的Series对象的处理能力;
- 代码运行的结果:成功创建一个包含整数和字符串类型的Series对象,并对其进行了访问、修改加入列表型操作;
- 我的结论:Pandas可以处理混合类型的Series对象。
实验二:DataFrame对象的应用
实验要求:
- 定义一个DataFrame对象,包含3个列,每列分别为整数、浮点数和字符串类型;
- 访问、修改DataFrame对象中的数据;
- 对DataFrame对象进行计算,如求和、求平均值等。
示例代码:
import pandas as pd
# 定义一个DataFrame对象
data = {'int_col': [1, 2, 3, 4, 5], 'float_col': [1.2, 2.3, 3.4, 4.5, 5.6], 'str_col': ['a', 'b', 'c', 'd', 'e']}
df = pd.DataFrame(data)
# 访问DataFrame对象中的数据
print(df['int_col'][0]) # 输出第一行第一列的数据
print(df.loc[1, 'str_col']) # 输出第二行第三列的数据
# 修改DataFrame对象中的数据
df.loc[2, 'float_col'] = 3.5
# 对DataFrame对象进行计算
print(df.sum()) # 求和
print(df.mean()) # 求平均值
修改代码:将str_col表示的字符列表变换成字符串,去掉修改对象数据中的列索引只保留行索引;
import pandas as pd
# 定义一个DataFrame对象
data = {'int_col': [1, 2, 3, 4, 5], 'float_col': [1.2, 2.3, 3.4, 4.5, 5.6], 'str_col': 'defef'}
df = pd.DataFrame(data)
# 访问DataFrame对象中的数据
print(df['int_col'][0]) # 输出第一行第一列的数据
print(df.loc[1, 'str_col']) # 输出第二行第三列的数据
print(df)
# 修改DataFrame对象中的数据
df.loc[ 'float_col'] = 1
print(df)
# 对DataFrame对象进行计算
print(df.sum()) # 求和
print(df.mean()) # 求平均值
- 修改意图:测试Pandas中DataFrame对象对于字符串的处理,测试当修改对象中列索引为空时DataFrame对象如何执行修改操作;
- 代码运行的结果:成功创建一个包含整数和字符串类型的DataFrame对象,并将字符串转变成了每一行都是字符串,修改对象在列索引为空的情况下,也是直接默认为修改列索引的最后一位;
- 我的结论:DataFrame对象可以很好的处理索引缺失、对象不为列表的情况。
实验三:综合实例
实验要求:
- 定义一个包含省会城市、人口、GDP、城市面积的DataFrame对象;
- 计算各种排名,如人口最多的城市、GDP最高的城市等;
- 使用Pandas绘图,可视化上述实验结果。
示例代码:
import pandas as pd
import matplotlib.pyplot as plt
# 定义一个包含省会城市、人口、GDP、城市面积的DataFrame对象
data = {'city': ['北京', '上海', '广州', '深圳'], 'population': [2171, 2424, 1500, 1303],
'gdp': [30320, 32679, 20353, 22458], 'area': [16410, 6340, 7434, 1996]}
df = pd.DataFrame(data)
# 计算各种排名
pop_rank = df['population'].rank(ascending=False)
gdp_rank = df['gdp'].rank(ascending=False)
area_rank = df['area'].rank(ascending=False)
# 将排名添加到DataFrame对象中
df['pop_rank'] = pop_rank
df['gdp_rank'] = gdp_rank
df['area_rank'] = area_rank
# 使用Pandas绘图,可视化实验结果
df.plot(kind='bar', x='city', y=['population', 'gdp', 'area'], title='China Capital Cities')
plt.show()
修改代码:修改了画图部分的代码,新增了对横坐标字体和大小的要求;
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
# 定义一个包含省会城市、人口、GDP、城市面积的DataFrame对象
data = {'city': ['北京', '上海', '广州', '深圳'], 'population': [2171, 2424, 1500, 1303],
'gdp': [30320, 32679, 20353, 22458], 'area': [16410, 6340, 7434, 1996]}
df = pd.DataFrame(data)
# 计算各种排名
pop_rank = df['population'].rank(ascending=False)
gdp_rank = df['gdp'].rank(ascending=False)
area_rank = df['area'].rank(ascending=False)
# 将排名添加到DataFrame对象中
df['pop_rank'] = pop_rank
df['gdp_rank'] = gdp_rank
df['area_rank'] = area_rank
# 使用Pandas绘图,可视化实验结果
df.plot(kind='bar', x='city', y=['population', 'gdp', 'area'], title='China Capital Cities')
# 自定义横坐标为城市名称,字体为宋体
font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
plt.xticks(fontproperties=font)
plt.show()
- 修改意图:原先横坐标的城市名称不能正常输出,修改代码实现横坐标的正常显示;
- 代码运行的结果:横坐标的城市名称能正常输出;
- 我的结论:熟悉了matplotlib.pyplot进行画图