蓝桥杯(C++)--基础算法

基础算法

枚举

将问题中每个解都释放出来,进行验证和比较,以找出最优解和所有解。

1.特别数的和  OJ:191

#include <iostream>
#include <cstdio>

using namespace std;
typedef long long ll;

ll ans = 0;  // 累计和
int n;       // 数字个数

// 检查数字是否满足条件
int cheak(int x) {
    while (x) {
        int t = x % 10;
        if (t == 2 || t == 0 || t == 1 || t == 9)
            return 1;
        x /= 10;
    }
    return 0;
}

int main() {
    cin >> n;  // 读取数字个数

    for (int i = 1; i <= n; i++) {
        if (cheak(i))  // 如果数字满足条件,将其累加到结果中
            ans += i;
    }
    cout << ans << endl;  // 输出结果
    return 0;
}

2.反倍数  OJ:152

#include <iostream>
using namespace std;
int a, b, c; // 定义整型变量 a、b、c

bool f(int x) {
    // 判断是否满足 x 除以 a、b、c 的余数均不为 0
    return x % a != 0 && x % b != 0 && x % c != 0;//&&是逻辑与,相当于且,需同时满足
}

int main() {
    // 定义整型变量 n 和 sum
    int n, sum;
    cin >> n;
    cin >> a >> b >> c;
    for (int i = 1; i <= n; i++) {
        // 如果 i 满足函数 f 的条件,就把 sum 加 1
        if (f(i)) {
            sum++;
        }
    }
    cout << sum << endl;
    return 0;
}

3.找到最多的数  OJ:3227

#include <bits/stdc++.h>  // 包含 STL 库的头文件
using namespace std;  // 使用 std 命名空间

const int N = 1e6 + 9;  // 定义常量 N,表示数组的大小。

int a[N];  // 定义一个大小为 N 的整型数组

int main() {
    int n, m;  // 定义整型变量 n 和 m,分别表示行数和列数
    cin >> n >> m;  // 输入行数和列数

    int k = 0;  // 初始化计数器 k 为 0
    for (int i = 1; i <= n; i++) {  // 遍历每一行
        for (int j = 1; j <= m; j++) {  // 遍历每一列
            cin >> a[k++];  // 从标准输入中读取一个数,并将其存储在数组 a 中
        }
    }

    sort(a, a + k);  // 对数组 a 进行排序

    cout << a[k / 2];  // 输出排序后数组 a 中的中间元素
    return 0;
}

const 变量指的是,此变量的值是只读的,不应该被改变。

双层for循环遍历整个矩阵。

使用STL中的sort函数。

sort()的使用方法

在C++中使用sort()函数需要使用

#include <bits/stdc++.h>

头文件

sort()基本使用方法
 sort()函数可以对给定区间所有元素进行排序。它有三个参数sort(begin, end, cmp),其中begin为指向待sort()的数组的第一个元素的指针,end为指向待sort()的数组的最后一个元素的下一个位置的指针,cmp参数为排序准则,cmp参数可以不写,如果不写的话,默认从小到大进行排序。

具体请看这里

4.小蓝的漆房  OJ:3272(有代码无注释)

#include<bits/stdc++.h>
using namespace std;

const int N = 1e5 + 10;//10的5次方加10,即10010
int a[N] , b[N];

signed main()
{
    int T = 1;
    cin >> T;
    while(T --){
        int n , k , res = 0x3f3f3f3f;//一般dfs或者dp求最小值的问题中间会出现一些不存在的情况,一般会采用一种方法就是返回一个很大的值,这样去最小的时候就不会取到这种情况了
        cin >> n >> k;
        for(int i = 1 ; i <= n ; i ++) cin >> a[i];
        for(int i = 1 ; i <= 60 ; i ++){
            int cnt = 0;
            for(int j = 1 ; j <= n ; j ++) b[j] = a[j];
            for(int j = 1 ; j <= n ; j ++){
                if(b[j] != i){
                    for(int h = j ; h <= j + k - 1 ; h ++) b[h] = i;
                    j = j + k - 1;
                    cnt ++ ;
                }
            }
            res = min(res , cnt);
        }
        cout << res << '\n';
    }
    return 0;
}

模拟

一般由较多简单但不好处理的问题组成,会经常写比较多的小函数辅助解题

例如int和string的相互转换,回文串判断,日期转换,各种条件判断等。

1.扫雷  OJ:549

#include <iostream>  // 包含输入输出流的头文件
using namespace std;  // 使用 std 命名空间

int n, m;  // 定义整型变量 n 和 m,表示矩阵的行数和列数
int d[100][100] = {0};  // 定义一个二维整数数组 d,用于存储矩阵的数据

int main() {

    cin >> n >> m;  // 输入矩阵的行数和列数

    for (int i = 0; i < n; i++) {  // 遍历矩阵的每一行
        for (int j = 0; j < m; j++) {  // 遍历矩阵的每一列
            cin >> d[i][j];  // 把矩阵中每个元素的值输入数组
        }
    }

    for (int i = 0; i < n; i++) {  // 遍历矩阵的每一行
        for (int j = 0; j < m; j++) {  // 遍历矩阵的每一列
            int count = 0;  // 定义整型变量 count,用于统计满足条件的元素个数

            if (d[i][j] == 1) {  // 如果当前元素的值为 1
                cout << 9 << " ";  // 输出 9
            }
            else {  // 否则
                for (int x = i - 1; x <= i + 1; x++) {  // 遍历当前元素所在行的上一行和下一行
                    for (int y = j - 1; y <= j + 1; y++) {  // 遍历当前元素所在列的左一列和右一列
                        if (x >= 0 && y >= 0 && x < n && y < m && d[x][y] == 1) {  // 检查坐标是否在矩阵范围内,并且对应元素的值为 1
                            count++;  // 满足条件的元素个数加 1
                        }
                    }
                }
                cout << count << " ";  // 输出满足条件的元素个数
            }
        }
        cout << endl;  // 输出换行符
    }

    return 0;  // 程序正常结束,返回 0
}

2.灌溉  OJ:551

#include <iostream>  // 包含输入输出流的头文件
using namespace std;  // 使用 std 命名空间

const int MAX_N = 100;  // 定义常量 MAX_N,表示矩阵的最大大小
int a[MAX_N][MAX_N], b[MAX_N][MAX_N];  // 定义整型二维数组 a 和 b

int main() {
    int n, m, t;  // 定义整型变量 n、m 和 t,分别表示矩阵的行数、列数和灌溉次数
    cin >> n >> m >> t;  // 输入矩阵的行数、列数和灌溉次数

    for (int i = 0; i < t; ++i) {  // 遍历灌溉次数
        int x, y;  // 定义整型变量 x 和 y,表示当前灌溉的位置
        cin >> x >> y;  // 输入当前灌溉的位置的行号和列号
        a[x - 1][y - 1] = 1;  // 将当前灌溉的位置标记为已灌溉
    }

    int k;  // 定义整型变量 k,表示剩余的灌溉次数
    cin >> k;

    while (k--) {  // 当还有灌溉次数时,执行循环
        for (int i = 0; i < n; i++) {  // 遍历矩阵的每一行
            for (int j = 0; j < m; j++) {  // 遍历矩阵的每一列
                if (a[i][j] == 1) {  // 如果当前位置已经被灌溉
                    if (i - 1 >= 0) b[i - 1][j] = 1;  // 将当前位置左上角的位置标记为已灌溉
                    if (i + 1 < n) b[i + 1][j] = 1;  // 将当前位置右上角的位置标记为已灌溉
                    if (j - 1 >= 0) b[i][j - 1] = 1;  // 将当前位置左下角的位置标记为已灌溉
                    if (j + 1 < m) b[i][j + 1] = 1;  // 将当前位置右下角的位置标记为已灌溉
                    b[i][j] = 1;  // 将当前位置标记为已灌溉
                }
            }
        }

        for (int i = 0; i < n; ++i) {  // 遍历矩阵的每一行
            for (int j = 0; j < m; ++j) {  // 遍历矩阵的每一列
                a[i][j] = b[i][j];  // 将 b 数组中的值复制到 a 数组中
                b[i][j] = 0;  // 将 b 数组中的值重置为 0,以便下一次迭代使用
            }
        }
    }

    int ans = 0;  // 定义整型变量 ans,表示被灌溉的位置的数量
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < m; ++j) {
            if (a[i][j] == 1) {
                ans++;  // 如果当前位置被灌溉,ans 加 1
            }
        }
    }
    cout << ans << '\n';  // 输出被灌溉的位置的数量
    return 0;  // 程序正常结束,返回 0
}

3.回文日期  OJ:498

#include <iostream>
using namespace std;

bool isLeap(int y){
    return (y%4==0&&y%100!=0)||(y%400==0);
}

bool check(int year,int month,int day){//判断是否为合法日期
    if(month>12||month==0) return false;
    if(day>31) return false;
    if(month==2){
        if(isLeap(year)&&day>29)
            return false;
        if(!isLeap(year)&&day>28)
            return false;
    }
    if(month==4||month==6||month==9||month==11){
        if(day>30) return false;
    }
    return true;
}
int main()
{
    int n,i;
    cin>>n;
    int a,b,c,d,e,f,g,h;//8位数字
    int year,month,day;
    bool flag=false;
    for(i=n+1;i<=99999999;i++){
        year=i/10000;
        month=(i%10000)/100;
        day=i%100;
        a=i%10;
        b=(i/10)%10;
        c=(i/100)%10;
        d=(i/1000)%10;
        e=(i/10000)%10;
        f=(i/100000)%10;
        g=(i/1000000)%10;
        h=(i/10000000)%10;
        if(a==h&&b==g&&c==f&&d==e&&flag==false){
            if(check(year,month,day)){
                cout<<i<<endl;
                flag=true;//只输出一个回文
            }
        }
        if(a==h&&b==g&&c==f&&d==e&&a==c&&b==d){
            if(check(year,month,day)){
                cout<<i<<endl;
                break;
            }
        }

    }
    return 0;
}

4.小蓝和小桥的挑战  OJ:3238

#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10;
int a[N] , t , n;
int main()
{
    cin >> t;
    while(t --)
    {
        cin >> n;
        int sum = 0 , z = 0;
        for(int i = 1 ; i <= n ; i ++)
        {
            cin >> a[i] , sum += a[i];  
            if(!a[i]) z ++;
        }    
        sum += z;
        if(sum == 0) cout << z + 1 << '\n';
        else cout << z << '\n';
    }
    return 0;
}

5.DNA序列修正  OJ:3238

#include<bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10;
int a[N] , t , n;
int main()
{
    cin >> t;
    while(t --)
    {
        cin >> n;
        int sum = 0 , z = 0;
        for(int i = 1 ; i <= n ; i ++)
        {
            cin >> a[i] , sum += a[i];  
            if(!a[i]) z ++;
        }    
        sum += z;
        if(sum == 0) cout << z + 1 << '\n';
        else cout << z << '\n';
    }
    return 0;
}

6.无尽的石头  OJ:3766

#include<bits/stdc++.h>

using namespace std;
#define ll long long

const ll MAX = 1e6;
vector<ll> stones;

ll sum_digits(ll n) {
    ll sum = 0;
    while (n) {
        sum += n % 10;
        n /= 10;
    }
    return sum;
}

void preprocess() {
    stones.push_back(1);
    while (true) {
        ll next = *--stones.end() + sum_digits(*--stones.end());
        if (next <= MAX) {
            stones.push_back(next);
        } else {
            break;
        }
    }
}

int main() {
    preprocess();
    int t;
    cin >> t;
    vector<ll> ans;
    while (t--) {
        int n;
        cin >> n;
        auto it = find(stones.begin(), stones.end(), n);
        if (it != stones.end()) {
            cout << it - stones.begin() << endl;
        } else {
            cout << -1 << endl;
        }
    }
    return 0;
}

递归

函数直接或间接调用自身。

1.数的计算  OJ:760

#include<bits/stdc++.h>
using namespace std;
int alln(int n){
    
    int sum=0,num=n/2;
        if(n<=1)return 1; 
        else{
    for(int i=0;i<=num;++i)
    sum+=alln(i);
        return sum;
}
    
    }
int main(){
    int m;
    cin>>m;
    cout<<alln(m);
}

2.计算函数值  OJ:

#include<bits/stdc++.h>
using namespace std;
int f(int x){
    if(x==0)return 1;
    if(x%2)return f(x-1)+1;
    return f(x/2);
}

int main(){
    int n;
    cin>>n;
    cout<<f(n);
    return 0;
}

进制转换

1.进制  OJ:2489

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
    printf("%d",0X2021ABCD);
    return 0;
}

2.Alice和Bob的爱恨情仇  OJ:3865

#include <iostream>
using namespace std;
long long ans,n,k,x;
int main()
{
    cin>>n>>k;
    while(n--)
    {
        cin>>x;
        ans+=(x%2); 
        
    }
    if(ans%2)
    {
        cout<<"Alice";
    }
    else
    {
        cout<<"Bob";
    }
    return 0;
}

前缀和

1.区间次方和  OJ:3382

#include <iostream>
#include <cmath>
using namespace std;

typedef long long LL;

const int N = 1e5 + 10;
const int MOD = 1e9 + 7;

LL a[N];
LL b[N][10];
int n, m, l, r, k;

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        for (int j = 1; j <= 5; j++)
            b[i][j] = b[i - 1][j] + pow(a[i], j);
    }

    while (m--) {
        cin >> l >> r >> k;
        cout << (b[r][k] - b[l - 1][k]) % MOD << "\n";
    }

    return 0;
}

2.小郑的蓝桥平衡串  OJ:3419

#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>

using namespace std;
const int N = 2000;
int mp[N * 2];
int main() {
    string s;
    cin >> s;
    int n = s.length();
    int sum = 0;
    int ans = 0;
    memset(mp, -1, sizeof(mp));
    mp[N] = 1;
    for (int i = 0; i < n; i++) {
        if (s[i] == 'L') {
            sum++;
        } else {
            sum--;
        }
        if (mp[sum + N] != -1) {
            ans = max(ans, i - mp[sum + N] + 1);
        } else {
            mp[sum + N] = i + 1;
        }
    }
    cout << ans << endl;
    return 0;
}

3.大石头的搬运工  OJ:3829

#include <iostream>
#include <cstring>
#include <algorithm>

#define x first
#define y second

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int N = 1e5 + 10;

int n;
PII q[N];
LL pre[N], nex[N];

int main()
{
    cin >> n;
    for (int i = 1; i <= n; ++ i )
        cin >> q[i].y >> q[i].x;
    
    sort(q + 1, q + n + 1);
    
    LL s = 0;
    for (int i = 1; i <= n; ++ i ) 
    {
        pre[i] = pre[i - 1];
        pre[i] += s * (q[i].x - q[i - 1].x);
        s += q[i].y;
    }
    
    s = 0;
    for (int i = n; i >= 1; -- i )
    {
        nex[i] = nex[i + 1];
        nex[i] += s * (q[i + 1].x - q[i].x);
        s += q[i].y;
    }
    
    LL res = 1e18;
    for (int i = 1; i <= n; ++ i )
        res = min(res, pre[i] + nex[i]);
    
    cout << res << endl;
    
    return 0;
}

4.最大数组和   OJ:3260

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
    int t;
    cin >> t;
    while(t--){
        int n, k;
        cin >> n >> k;
        vector<ll> a(n), sum(n + 1, 0);
        for(int i = 0;i < n;i++) cin >> a[i];
        sort(a.begin(), a.end());
        for(int i = 1;i <= n;i++) sum[i] = sum[i - 1] + a[i - 1];
        ll ans = 0;
        int pos = 0;
        while(k >= 0){
            ans = max(ans, sum[n - k] - sum[pos]);
            pos += 2; 
            k--;
        }
        cout << ans << "\n";
    }
    return 0;
}

5.四元组问题  OJ:3416

#include <bits/stdc++.h>

using namespace std;

bool FoursNumberFind(vector<int>& nums) {
    stack<int> st;
    int n = nums.size(), k = INT_MIN, INF = INT_MAX;
    
    //min_r[i] = min(nums[r]), i < r < n。
    //表示第i个数(不包括第i个数)右边的最小值 
    vector<int> min_r(n, INF); 
    
    // 用前缀和方法求 min_r 数组 
    for (int i = n - 2; i >= 0; --i) {
        min_r[i] = min(min_r[i + 1], nums[i + 1]);
    }
    
    //用单调栈求下标位 nums[c] < nums[a] < nums[b] 的情况 
    for(int i = 0; i < n; ++i){
        // 下标 i 即为 c ,k 即为 nums[a] 
        if(nums[i] < k)  { //如果存在  nums[c] < nums[a] < nums[b] 的情况
            //判断 c 的右边是否 有比 nums[c] 小的数, 有则表示存在下标 d ,返回true 
            if(nums[i] > min_r[i]) return true;
        }
        
        // 如果栈不为空并且栈顶元素小于当前访问的元素 
        while(!st.empty() && st.top() < nums[i]) { 
            //需要找满足小于nums[b]的最大 k 值 
            k = max(k,st.top()); 
            st.pop();
        }
        
        //压入栈顶,即为更新 nums[b] 
        st.push(nums[i]);
    }
    return false;
}

int main() {
    int n;
    cin >> n;
    vector<int> nums(n);
    
    for (int i = 0; i < n; i++) {
        scanf("%d", &nums[i]);
    }
    
    if (FoursNumberFind(nums)) {
        cout << "YES" << endl;
    } else {
        cout << "NO" << endl;
    }
 
    return 0;
}

差分

1.区间更新  OJ:3291

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;

const int maxn = 1e7 + 10;
int num[maxn];
int vis[maxn];
int n, m;
int l, r, val;

int main( ){
    while(scanf("%d%d",&n,&m)!=EOF){
        for(int i =0;i <= n+1; ++i) vis[i] = 0;
        for(int i = 1;i <= n; ++i)  scanf("%d",num+i);
        while(m--){
            scanf("%d%d%d",&l,&r,&val);
            if(l>r) swap(l,r);
            vis[l] += val;
            vis[r+1] -= val;
        }
        for(int i = 1;i <= n; ++i){
            vis[i] += vis[i-1];
            num[i] += vis[i];
        }
        printf("%d",num[1]);
        for(int i = 2;i <= n; ++i){
            printf(" %d",num[i]);
        }
        puts("");
    }
    return 0;
}

2.小明的彩灯  OJ:1276

#include <iostream>
const int maxn=500005;
long long N[maxn]={0};
long long b[maxn]={0};
using namespace std;
int main()
{
  int P,Q;
  cin>>P>>Q;
  for(int i=1;i<=P;i++){
    cin>>N[i];
    b[i]=N[i]-N[i-1];//定义差分和数组
  }
  while(Q>0){
    long long l,r,x;
    cin>>l>>r>>x;
    b[l]+=x;
    b[r+1]-=x;//对两端进行操作
    Q--;
  }
  for(int i=1;i<=P;i++){
    N[i]=b[i]+N[i-1];//最后回归原来数组 
    if(N[i]<0){
      cout<<0<<" ";
    }else
    cout<<N[i]<<" ";
  }
  return 0;
}

3.肖恩的投球游戏  OJ:3693

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef unsigned long long uLL;
const int N = 100010;

int n, q;
LL a[N], b[N];
int main()
{
    ios_base :: sync_with_stdio(false);
    cin.tie(0); cout.tie(0);
    cin >> n >> q;
    for (int i = 1; i <= n; ++i) cin >> a[i];
    for (int i = 1; i <= q; ++i) {
        int l, r, c;
        cin >> l >> r >> c;
        b[l] += c, b[r + 1] -= c;
    }
    for (int i = 1; i <= n; ++i) b[i] += b[i - 1];
    for (int i = 1; i <= n; ++i) cout << a[i] + b[i] << " ";
    return 0;
}

4.肖恩的投球游戏加强版  OJ:3694

5.泡澡

离散化

贪心

双指针

二分

倍增

构造

位运算

排序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值