基于图像深度信息的摔倒检测

基于图像深度信息的摔倒检测

该方法利用深度摄像头(如 Kinect 或 Intel RealSense)获取每一帧图像的深度信息。摔倒时,人体的垂直高度(即深度值)通常会发生剧烈变化。通过分析深度图,可以准确判断摔倒事件。

步骤:
  1. 深度图像获取:使用深度摄像头获取每一帧的深度图像。
  2. 深度信息提取:提取人体的深度信息,计算人体相对于摄像头的距离。
  3. 摔倒判定:摔倒时,人体的深度值会急剧变化,通过分析深度值的变化来判断摔倒。
代码实现:基于图像深度信息的摔倒检测
 

python

复制编辑

import cv2 import numpy as np # 假设深度图像通过深度摄像头获得 cap_depth = cv2.VideoCapture("path_to_depth_video.mp4") # 替换为深度视频路径 cap_rgb = cv2.VideoCapture("path_to_rgb_video.mp4") # 替换为RGB视频路径 while cap_depth.isOpened() and cap_rgb.isOpened(): ret_depth, depth_frame = cap_depth.read() ret_rgb, rgb_frame = cap_rgb.read() if not ret_depth or not ret_rgb: break # 假设深度图像已经归一化(0到1之间) depth_frame_normalized = depth_frame / 255.0 # 将深度图像归一化处理 # 获取深度图像中人体的深度值(此处假设提取的是人体的头部位置) height, width = depth_frame.shape[:2] head_x, head_y = width // 2, height // 4 # 假设头部在图像的中心 head_depth = depth_frame_normalized[head_y, head_x] # 获取头部的深度值 # 假设摔倒前的深度值范围为 [0.5, 1.0],摔倒时深度值会急剧降低 if head_depth < 0.3: # 深度值小于某个阈值,认为摔倒 cv2.putText(rgb_frame, "FALL DETECTED!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) # 显示结果 cv2.imshow("Fall Detection - Depth Information", rgb_frame) # 按 'q' 键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break cap_depth.release() cap_rgb.release() cv2.destroyAllWindows()

代码解释:

  1. 深度图像获取:通过深度摄像头获取每一帧的深度图像(depth_frame),同时获取对应的 RGB 图像(rgb_frame)。
  2. 深度信息提取:我们假设通过图像中心位置提取人体头部的深度信息。
  3. 摔倒判定:摔倒时人体的深度值会急剧变化(例如,头部的深度值会突然变小),通过设置深度值阈值来判断摔倒。

优点:

  • 准确性高:利用深度信息来判断摔倒,能够避免二维图像中由于光照、遮挡等问题引起的误判。
  • 不受遮挡影响:深度信息提供了更全面的空间感知,能够应对摄像头视角和人体姿势的变化。

缺点:

  • 依赖深度摄像头:需要特定的深度摄像头设备(如 Kinect 或 RealSense),增加了硬件要求。
  • 深度图噪声:深度图像可能会受到噪声影响,尤其在低光环境下,深度数据的准确性可能较差。

import cv2
import numpy as np

# 假设深度图像通过深度摄像头获得
cap_depth = cv2.VideoCapture("1.mp4")  # 替换为深度视频路径
cap_rgb = cv2.VideoCapture("1.mp4")  # 替换为RGB视频路径

while cap_depth.isOpened() and cap_rgb.isOpened():
    ret_depth, depth_frame = cap_depth.read()
    ret_rgb, rgb_frame = cap_rgb.read()
    if not ret_depth or not ret_rgb:
        break

    # 假设深度图像已经归一化(0到1之间)
    depth_frame_normalized = depth_frame / 255.0  # 将深度图像归一化处理

    # 获取深度图像中人体的深度值(此处假设提取的是人体的头部位置)
    height, width = depth_frame.shape[:2]
    head_x, head_y = width // 2, height // 4  # 假设头部在图像的中心

    head_depth = depth_frame_normalized[head_y, head_x]  # 获取头部的深度值

    # 假设摔倒前的深度值范围为 [0.5, 1.0],摔倒时深度值会急剧降低
    if head_depth < 0.3:  # 深度值小于某个阈值,认为摔倒
        cv2.putText(rgb_frame, "FALL DETECTED!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

    # 显示结果
    cv2.imshow("Fall Detection - Depth Information", rgb_frame)

    # 按 'q' 键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap_depth.release()
cap_rgb.release()
cv2.destroyAllWindows()
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

人工智能专属驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值