python学习思路

本文提供了一条Python学习路径,包括Python基础、数据处理(如pandas和numpy)、数据可视化(Matplotlib、Seaborn等)、网络爬虫、Web开发(Flask、Django)、数据库管理、机器学习算法和Linux知识。强调了学习过程中的坚持和实践经验的重要性。
摘要由CSDN通过智能技术生成

官方文旦https://docs.python.org/zh-cn/3/tutorial/index.html

CSDN平台粉丝已经十二万多了,以下是我自己的学习路线,至少是我目前能回忆起来的一些学习路线,希望能帮到你们。

一、python基础

基础

环境搭建

注释

变量

数据类型

数学计算

字符串

布尔值

列表

元组

集合

字典

控制流

函数

面向对象

继承

日期

JSON数据处理

格式化输入输出

警告处理

文件的基本处理

二、数据处理

需要掌握的模块:

模块

pandas

numpy

三、数据可视化

以下是常见需要绘制的图形,是需要掌握的:

内容

子图

散点图

折线图

柱形图

直方图

扇形图

K线图

箱型图

热力图

省市地图

水球图

个人建议需要掌握的模块:

模块

Matplotlib

Seaborn

Pyechart

五、网页基础与网络爬虫

需要掌握的网页基础内容:

内容

HTML

CSS

JS

需要掌握的网络爬虫内容:

基本模块

urllib

requests

re

Xpath

bs4

selenium

Scrapy

六、Web开发

web开发也是主要的一个内容,基于前面的网页基础,建议至少需要掌握一下其中一种:

建议掌握一种

Flask

Django

六、数据与服务器的管理

至少需要掌握的内容:

需要掌握

SQL

Linux

七、机器学习十大基本算法

以下是我脑子能想到比较常见的又还会的,不分顺序:

算法

线性回归

Logistic 回归

逐步回归

正则化(岭回归)

决策树

朴素贝叶斯

k-邻近算法(kNN)

Kmeans聚类

支持向量机(SVM)

随机森林(Random Forest)

主成份分析

主成分回归(PCR)

灰色关联

皮尔逊相关性

特征选择算法

XGBoost算法

LSTM模型

ARMA模型

神经网络

如果有时间,希望把西瓜书啃一遍。关于机器学习算法,可以使用Python和Matlab。哪样方便哪样来,本篇主要是介绍的Python,暑假我会更新一套完整的Matlab教程。

八、最后几句话

学习的过程不是一帆风顺的,一定要坚持。数据挖掘工程师在国内是很缺少的,自己打开招聘看看就知道了,对于有经验的数据工程师,至少都是两万起步,基本都能达到三万,这仅仅是公司的基本工资,如果还有股权,以及自己外快,具体自己算(不过要慢慢积累,不是说毕业就这么厉害了)。以上是我个人所学知识,但是对这些掌握也不能说是完全掌握,所以准备是要复习一遍。

对于学生,接触数据挖掘最多的应该就是大学期间的各种数学建模竞赛了,挑战性很强。最后说一句,不是你拿奖了,就代表你有这个实力了,不是说你没拿奖,就代表你没有这个实力了,数学建模竞赛,老玩家懂的都懂了,所以我就不直言。但是这个竞赛,我就把它定义为数据挖掘了。

关于一对一指导与教学部分,可以私信联系我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈都婆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值