文章目录
前言
这一篇讲解策略的可靠性
一、策 略 可 靠 性 检 测 方 法
(一)、评 估 指 标
通过胜率、年华收益率、最大回测、夏普比率来判断投资策略的可靠性
1)胜 率
2)年 化 收 益 率
3)最 大 回 测
4)夏 普 比 率
(二)、假 设 验 证
提出假设,通过多次检验,计算不同结果出现的频数,来决定是否接受或者拒绝这个假设,从而验证这个现象是否随机, 即 检测收益率 >0 时,是否是大概率事件,来判断投资策略的可靠性
二、周 期 策 略 的 数 据 可 靠 性 验 证
(一)、利用T-test检验
H0:样本均值 = 理论均值 =0
H1:样本均值 > 理论均值
T 统计量 = (样本均值 - 理论均值)/(样本标准差 /根号(样本数量))
t = (mean - 0)/(std/squrt(count))
⚠️:
计算的 t值 越大,样本均值与理论均值相似度越低
计算的 t值 越小,样本均值与理论均值相似度越高
P值:可能性
当P值 < 0.05时,表示H0概率只有百分之五,也就是样本理论数据有显著差异,所以拒绝原假设。(赚不到钱的概率小于百分之五)
当P值 > 0.05时,表示H0与H1没有显著性差异,所以接受原假设。(赚不到钱的概率大于百分之五)
1)导入相关模块
代码如下:
import sys,os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
import Data.Stock as DS
import Strategy.Base as STB
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import Strategy.ma_Strategy as MA
from scipy import stats
2)T-test检验模块
代码如下:
# 策略收益进行ttest检验
def ttest