金 融 量 化 分 析 • JoinQuant • 第 五 篇

本文探讨了金融量化策略的可靠性检测方法,包括胜率、年化收益率、最大回撤和夏普比率等评估指标,并通过T-test检验策略的可靠性。以平安银行、比亚迪、宁德时代和隆基股份为例,展示了策略实践检验效果,揭示了不同股票的赚钱概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述


前言

这一篇讲解策略的可靠性


一、策 略 可 靠 性 检 测 方 法

(一)、评 估 指 标

通过胜率、年华收益率、最大回测、夏普比率来判断投资策略的可靠性

1)胜 率

2)年 化 收 益 率

年 化 收 益 率

3)最 大 回 测

最 大 回 测

4)夏 普 比 率

夏 普 比 率

(二)、假 设 验 证

提出假设,通过多次检验,计算不同结果出现的频数,来决定是否接受或者拒绝这个假设,从而验证这个现象是否随机, 即 检测收益率 >0 时,是否是大概率事件,来判断投资策略的可靠性

二、周 期 策 略 的 数 据 可 靠 性 验 证

(一)、利用T-test检验

H0:样本均值 = 理论均值 =0
H1:样本均值 > 理论均值
T 统计量 = (样本均值 - 理论均值)/(样本标准差 /根号(样本数量))

t = (mean - 0)/(std/squrt(count))
⚠️
计算的 t值 越大,样本均值与理论均值相似度越低
计算的 t值 越小,样本均值与理论均值相似度越高

P值:可能性

当P值 < 0.05时,表示H0概率只有百分之五,也就是样本理论数据有显著差异,所以拒绝原假设。(赚不到钱的概率小于百分之五
当P值 > 0.05时,表示H0与H1没有显著性差异,所以接受原假设。(赚不到钱的概率大于百分之五

1)导入相关模块

代码如下:

import sys,os
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
import Data.Stock as DS
import Strategy.Base as STB
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import Strategy.ma_Strategy as MA
from scipy import stats 

2)T-test检验模块

代码如下:

# 策略收益进行ttest检验
def ttest
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Thomas_CC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值