线性回归(Logistic)

实现一个简单的线性回归模型,并使用最小二乘法来求解参数。


         均方误差=最小二乘法?

        最小二乘法实质就是最小化“均方误差”,而均方误差就是残差平方和的1/m(m为样本数),同时均方误差也是回归任务中最常用的性能度量。因此,最小二乘法与均方误差紧密相关,但不完全等同。(之前一直认为二者没区别,通过搜索资料明白他俩的关系,这里记录一下,strong!!!!!!)


 1.数据集构建

def make_moons(n_samples=1000, shuffle=True, noise=None):
    """
    生成带噪音的弯月形状数据
    输入:
        - n_samples:数据量大小,数据类型为int
        - shuffle:是否打乱数据,数据类型为bool
        - noise:以多大的程度增加噪声,数据类型为None或float,noise为None时表示不增加噪声
    输出:
        - X:特征数据,shape=[n_samples,2]
        - y:标签数据, shape=[n_samples]
    """
    n_samples_out = n_samples // 2
    n_samples_in = n_samples - n_samples_out

    outer_circ_x = torch.cos(torch.linspace(0, math.pi, n_samples_out))
    outer_circ_y = torch.sin(torch.linspace(0, math.pi, n_samples_out))

    inner_circ_x = 1 - torch.cos(torch.linspace(0, math.pi, n_samples_in))
    inner_circ_y = 0.5 - torch.sin(torch.linspace(0, math.pi, n_samples_in))

    print('outer_circ_x.shape:', outer_circ_x.shape, 'outer_circ_y.shape:', outer_circ_y.shape)
    print('inner_circ_x.shape:', inner_circ_x.shape, 'inner_circ_y.shape:', inner_circ_y.shape)

    # 使用'torch.cat'将两类数据的特征1和特征2分别延维度0拼接在一起,得到全部特征1和特征2
    # 使用'torch.stack'将两类特征延维度1堆叠在一起
    X = torch.stack(
        [torch.concat([outer_circ_x, inner_circ_x]),
         torch.concat([outer_circ_y, inner_circ_y])],
        dim=1
    )

    print('after concat shape:', torch.concat([outer_circ_x, inner_circ_x]).shape)
    print('X shape:', X.shape)
    y = torch.concat(
        [torch.zeros(n_samples_out), torch.ones(n_samples_in)]
    )

    print('y shape:', y.shape)

    # 如果shuffle为True,将所有数据打乱
    if shuffle:
        # 使用'torch.randperm'生成一个数值在0到X.shape[0],随机排列的一维Tensor做索引值,用于打乱数据
        idx = torch.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]

        # 如果noise不为None,则给特征值加入噪声
    if noise is not None:
        # 使用'torch.normal'生成符合正态分布的随机Tensor作为噪声,并加到原始特征上
        noise_tensor = torch.normal(mean=0.0, std=noise, size=X.shape)
        X = X + noise_tensor

    return X, y

         本任务的数据来自带噪音的两个弯月形状函数,对每个弯月一个类别。


2.模型构建

        线性模型定义为一个线性方程,形如y = wx + b,通过最小二乘法(最小化均方误差,梯度下降的思维来优化更新w,b),同一般线性回归模型,Logistic回归也会将输入特征与权重做线性叠加,Logistic引入的是非线性函数Logistic函数(也叫Sigmoid函数)作为激活函数,下面是简单展示一下Logistic函数:

# 在[-10,10]的范围内生成一系列的输入值,用于绘制函数曲线
x = torch.linspace(-10, 10, 10000)
plt.figure()
plt.plot(x.tolist(), torch.sigmoid(x).tolist(), color="#e4007f", label="Logistic Function")
# 设置坐标轴
ax = plt.gca()
# 取消右侧和上侧坐标轴
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
# 设置默认的x轴和y轴方向
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
# 设置坐标原点为(0,0)
ax.spines['left'].set_position(('data', 0))
ax.spines['bottom'].set_position(('data', 0))
# 添加图例
plt.legend()
plt.savefig('linear-logistic.pdf')
plt.show()

         运行结果:

 

         从Sigmoid函数结果来看,当输入在0附近,近似为线性函数,输入非常大或非常小的时候,则分别趋近于1或0,由此得出结论,线性模型的建立,通常会将权重和偏置初始化为0 ,N个样本一起进行分批预测。

class model_LR(op.Op):
    def __init__(self, input_dim):
        super(model_LR, self).__init__()
        # 存放线性层参数
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['w'] = torch.zeros(input_dim, 1)
        # self.params['w'] = paddle.normal(mean=0, std=0.01, shape=[input_dim, 1])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros(1)
        # 存放参数的梯度
        self.grads = {}
        self.X = None
        self.outputs = None

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        self.X = inputs
        # 线性计算
        score = torch.matmul(inputs, self.params['w']) + self.params['b']
        # Logistic 函数
        self.outputs = torch.sigmoid(score)
        return self.outputs

 3.损失函数

        用来量化测试值和真实值之间的差异,给定一个分类任务,y表示样本x的标签的真实概率分布,\hat{y}表示预测的标签分布,模型的目的是让\hat{y}更加接近y,这里可以采用交叉熵函数,越接近交叉熵越小,越远交叉熵越大。

        定义逻辑回归算子(op.Op类具体代码在最后附录展现)

class BinaryCrossEntropyLoss(op.Op):
    def __init__(self):
        self.predicts = None
        self.labels = None
        self.num = None

    def __call__(self, predicts, labels):
        return self.forward(predicts, labels)

    def forward(self, predicts, labels):
        """
        输入:
            - predicts:预测值,shape=[N, 1],N为样本数量
            - labels:真实标签,shape=[N, 1]
        输出:
            - 损失值:shape=[1]
        """
        self.predicts = predicts
        self.labels = labels
        self.num = self.predicts.shape[0]
        loss = -1. / self.num * (torch.matmul(self.labels.t(), torch.log(self.predicts)) + torch.matmul((1 - self.labels.t()),torch.log(1 - self.predicts)))
        loss = torch.squeeze(loss, dim=1)
        return loss

4.模型优化

        关于w,b的偏导数为:

         将偏导数的计算过程定义在算子中,完善算子, 代码如下:

class model_LR(op.Op):
    def __init__(self, input_dim):
        super(model_LR, self).__init__()
        # 存放线性层参数
        self.params = {}
        # 将线性层的权重参数全部初始化为0
        self.params['w'] = torch.zeros(input_dim, 1)
        # self.params['w'] = paddle.normal(mean=0, std=0.01, shape=[input_dim, 1])
        # 将线性层的偏置参数初始化为0
        self.params['b'] = torch.zeros(1)
        # 存放参数的梯度
        self.grads = {}
        self.X = None
        self.outputs = None

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        self.X = inputs
        # 线性计算
        score = torch.matmul(inputs, self.params['w']) + self.params['b']
        # Logistic 函数
        self.outputs = torch.sigmoid(score)
        return self.outputs

    def backward(self, labels):
        """
        输入:
            - labels:真实标签,shape=[N, 1]
        """
        N = labels.shape[0]
        # 计算偏导数
        self.grads['w'] = -1 / N * torch.matmul(self.X.t(), (labels - self.outputs))
        self.grads['b'] = -1 / N * torch.sum(labels - self.outputs)

        利用参数的梯度,对公式更新参数

        这里把更新的过程用一个学习器封装起来,代码如下:

class Optimizer(object):
    def __init__(self, init_lr, model):
        """
        优化器类初始化
        """
        #初始化学习率,用于参数更新的计算
        self.init_lr = init_lr
        #指定优化器需要优化的模型
        self.model = model

    @abstractmethod
    def step(self):
        """
        定义每次迭代如何更新参数
        """
        pass

#新增梯度下降法优化器
class SimpleBatchGD(Optimizer):
    def __init__(self, init_lr, model):
        super(SimpleBatchGD, self).__init__(init_lr=init_lr, model=model)

    def step(self):
        #参数更新
        #遍历所有参数,按照公式(3.8)和(3.9)更新参数
        if isinstance(self.model.params, dict):
            for key in self.model.params.keys():
                self.model.params[key] = self.model.params[key] - self.init_lr * self.model.grads[key]

 5.模型评估

        分类任务中利用准确率作为评价标准,模型预测的类别和真实类别一致,模型预测正确,反之,则不正确。

def accuracy(preds, labels):
    """
    输入:
        - preds:预测值,二分类时,shape=[N, 1],N为样本数量,多分类时,shape=[N, C],C为类别数量
        - labels:真实标签,shape=[N, 1]
    输出:
        - 准确率:shape=[1]
    """
    # 判断是二分类任务还是多分类任务,preds.shape[1]=1时为二分类任务,preds.shape[1]>1时为多分类任务
    if preds.shape[1] == 1:
        # 二分类时,判断每个概率值是否大于0.5,当大于0.5时,类别为1,否则类别为0
        # 使用'torch.gt'比较preds和0.5,返回bool类型的tensor,再使用'torch.float32'将bool类型的tensor转换为float32类型的tensor
        preds = torch.gt(preds, 0.5).float()
    else:
        # 多分类时,使用'torch.argmax'计算最大元素索引作为类别
        preds = torch.argmax(preds, dim=1)
    return torch.mean((preds == labels).float())

6.模型训练

        将模型的训练过程整体集合成RunnerV2类

class RunnerV2(object):
    def __init__(self, model, optimizer, metric, loss_fn):
        self.model = model
        self.optimizer = optimizer
        self.loss_fn = loss_fn
        self.metric = metric
        # 记录训练过程中的评价指标变化情况
        self.train_scores = []
        self.dev_scores = []
        # 记录训练过程中的损失函数变化情况
        self.train_loss = []
        self.dev_loss = []

    def train(self, train_set, dev_set, **kwargs):
        # 传入训练轮数,如果没有传入值则默认为0
        num_epochs = kwargs.get("num_epochs", 0)
        # 传入log打印频率,如果没有传入值则默认为100
        log_epochs = kwargs.get("log_epochs", 100)
        # 传入模型保存路径,如果没有传入值则默认为"best_model.pdparams"
        save_path = kwargs.get("save_path", "best_model.pdparams")
        # 梯度打印函数,如果没有传入则默认为"None"
        print_grads = kwargs.get("print_grads", None)
        # 记录全局最优指标
        best_score = 0
        # 进行num_epochs轮训练
        for epoch in range(num_epochs):
            X, y = train_set
            # 获取模型预测
            logits = self.model(X)
            # 计算交叉熵损失
            trn_loss = self.loss_fn(logits, y).item()
            self.train_loss.append(trn_loss)
            # 计算评价指标
            trn_score = self.metric(logits, y).item()
            self.train_scores.append(trn_score)
            # 计算参数梯度
            self.model.backward(y)
            if print_grads is not None:
                # 打印每一层的梯度
                print_grads(self.model)
            # 更新模型参数
            self.optimizer.step()
            dev_score, dev_loss = self.evaluate(dev_set)
            # 如果当前指标为最优指标,保存该模型
            if dev_score > best_score:
                self.save_model(save_path)
                print(f"best accuracy performence has been updated: {best_score:.5f} --> {dev_score:.5f}")
                best_score = dev_score
            if epoch % log_epochs == 0:
                print(f"[Train] epoch: {epoch}, loss: {trn_loss}, score: {trn_score}")
                print(f"[Dev] epoch: {epoch}, loss: {dev_loss}, score: {dev_score}")

    def evaluate(self, data_set):
        X, y = data_set
        # 计算模型输出
        logits = self.model(X)
        # 计算损失函数
        loss = self.loss_fn(logits, y).item()
        self.dev_loss.append(loss)
        # 计算评价指标
        score = self.metric(logits, y).item()
        self.dev_scores.append(score)
        return score, loss

    def predict(self, X):
        return self.model(X)

    def save_model(self, save_path):
        torch.save(self.model.params, save_path)

    def load_model(self, model_path):
        self.model.params = torch.load(model_path)

         下面对1000个样本,每个样本包含2个特征,进行线性模型的训练

import matplotlib.pyplot as plt
# 采样1000个样本
n_samples = 1000
X, y = make_moons(n_samples=n_samples, shuffle=True, noise=0.5)
# 可视化生产的数据集,不同颜色代表不同类别
plt.figure(figsize=(5,5))
plt.scatter(x=X[:, 0].tolist(), y=X[:, 1].tolist(), marker='*', c=y.tolist())
plt.xlim(-3,4)
plt.ylim(-3,4)
plt.savefig('linear-dataset-vis.pdf')
plt.show()

# 将1000条样本数据拆分成训练集、验证集和测试集,其中训练集640条、验证集160条、测试集200条。代码实现如下:
num_train = 640
num_dev = 160
num_test = 200

X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]

y_train = y_train.reshape([-1, 1])
y_dev = y_dev.reshape([-1, 1])
y_test = y_test.reshape([-1, 1])  # 将行向量转变为列向量

# 打印X_train和y_train的维度
print("X_train shape: ", X_train.shape, "y_train shape: ", y_train.shape)

        生成一个640条样本的训练集,160条样本的验证集,200条样本的测试集,展示如下:

        接着利用训练集样本对模型进行训练:

# 固定随机种子,保持每次运行结果一致
torch.seed()

# 特征维度
input_dim = 2
# 学习率
lr = 0.1

# 实例化模型
model = model_LR(input_dim=input_dim)
# 指定优化器
optimizer = SimpleBatchGD(init_lr=lr, model=model)
# 指定损失函数
loss_fn = BinaryCrossEntropyLoss()
# 指定评价方式
metric = accuracy

# 实例化RunnerV2类,并传入训练配置
runner = RunnerV2(model, optimizer, metric, loss_fn)

runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=500, log_epochs=50, save_path="best_model.pdparams")

         训练结果如下:

         对模型训练的结果进行可视化处理

def plot(runner,fig_name):
    plt.figure(figsize=(10,5))
    plt.subplot(1,2,1)
    epochs = [i for i in range(len(runner.train_scores))]
    # 绘制训练损失变化曲线
    plt.plot(epochs, runner.train_loss, color='#e4007f', label="Train loss")
    # 绘制评价损失变化曲线
    plt.plot(epochs, runner.dev_loss, color='#f19ec2', linestyle='--', label="Dev loss")
    # 绘制坐标轴和图例
    plt.ylabel("loss", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='upper right', fontsize='x-large')
    plt.subplot(1,2,2)
    # 绘制训练准确率变化曲线
    plt.plot(epochs, runner.train_scores, color='#e4007f', label="Train accuracy")
    # 绘制评价准确率变化曲线
    plt.plot(epochs, runner.dev_scores, color='#f19ec2', linestyle='--', label="Dev accuracy")
    # 绘制坐标轴和图例
    plt.ylabel("score", fontsize='large')
    plt.xlabel("epoch", fontsize='large')
    plt.legend(loc='lower right', fontsize='x-large')
    plt.tight_layout()
    plt.savefig(fig_name)
    plt.show()

plot(runner,fig_name='linear-acc.pdf')

        可视化结果如下 :

        模型就训练好啦~~~~~


7.模型评价

对训练完后的模型进行评价,观察测试集上的准确率,代码如下

score, loss = runner.evaluate([X_test, y_test])
print("[Test] score/loss: {:.4f}/{:.4f}".format(score, loss))

def decision_boundary(w, b, x1):
    w1, w2 = w
    x2 = (- w1 * x1 - b) / w2
    return x2

plt.figure(figsize=(5,5))
# 绘制原始数据
plt.scatter(X[:, 0].tolist(), X[:, 1].tolist(), marker='*', c=y.tolist())

w = model.params['w']
b = model.params['b']
x1 = torch.linspace(-2, 3, 1000)
x2 = decision_boundary(w, b, x1)
# 绘制决策边界
plt.plot(x1.tolist(), x2.tolist(), color="red")
plt.show()


附录

import torch
torch.seed() #设置随机种子

class Op(object):
    def __init__(self):
        pass

    def __call__(self, inputs):
        return self.forward(inputs)

    def forward(self, inputs):
        raise NotImplementedError

    def backward(self, inputs):
        raise NotImplementedError

# 线性算子
class Linear(Op):
    def __init__(self,input_size):
        """
        输入:
           - input_size:模型要处理的数据特征向量长度
        """

        self.input_size = input_size

        # 模型参数
        self.params = {}
        self.params['w'] = torch.randn(self.input_size,1)
        self.params['b'] = torch.zeros([1])

    def __call__(self, X):
        return self.forward(X)

    # 前向函数
    def forward(self, X):
        """
        输入:
           - X: tensor, shape=[N,D]
           注意这里的X矩阵是由N个x向量的转置拼接成的,与原教材行向量表示方式不一致
        输出:
           - y_pred: tensor, shape=[N]
        """

        N,D = X.shape

        if self.input_size==0:
            return torch.full([N,1], fill_value=self.params['b'])
        
        assert D==self.input_size # 输入数据维度合法性验证

        # 使用paddle.matmul计算两个tensor的乘积
        y_pred = torch.matmul(X,self.params['w'])+self.params['b']
        
        return y_pred

 感悟

做完了整个实验给我的感觉就是不难,但是很麻烦因为给的是paddlepaddle的源代码,要一点点看懂paddlepaddle源代码还要用torch复刻出来很墨迹,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值