DAY 32 官方文档的阅读
知识点回顾:
1.官方文档的检索方式:github和官网
2.官方文档的阅读和使用:要求安装的包和文档为同一个版本
3.类的关注点:
a.实例化所需要的参数
b.普通方法所需要的参数
c.普通方法的返回值
4.绘图的理解:对底层库的调用
作业:参考pdpbox官方文档中的其他类,绘制相应的图,任选即可
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
features = iris.feature_names
target = 'target'
X_train, X_test, y_train, y_test = train_test_split(
df[features], df[target], test_size=0.2, random_state=42
)
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
import pdpbox
print(pdpbox.__version__)
from pdpbox.info_plots import TargetPlot
feature = 'petal length (cm)'
feature_name = feature
feature = 'petal length (cm)'
feature_name = feature
)
target_plot = TargetPlot(
df=df,
feature=feature,
feature_name=feature_name,
# target='target',
target='target',
grid_type='percentile',
num_grid_points=10
target_plot.plot()
type(target_plot.plot())
len(target_plot.plot())
target_plot.plot()[0]
target_plot.plot()[2]
fig, axes, summary_df = target_plot.plot(
which_classes=None,
show_percentile=True,
engine='plotly',
template='plotly_white'
)
)
fig.update_layout(
width=800,
height=500,
title=dict(text=f'Target Plot: {feature_name}', x=0.5)
fig.show()