算法随笔_72: 最大子数组和

上一篇:算法随笔_71: 各位相加_方法2-CSDN博客

=====

题目描述如下:

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

=====

算法思路:

我们取某个元素 i 为某个子数组的右端点。找出所有以元素i为右端点的子数组,并计算出这些数组的最大和,我们设以元素i为右端点的最大和为maxSum[i]。那么我们可以发现以下的递推公式:

当maxSum[i]大于0时,maxSum[i+1] = maxSum[i]+nums[i+1]

当maxSum[i]小于等于0时,maxSum[i+1] = nums[i+1]

因此我们从左往右遍历一遍数组即可找出所有的maxSum[i]。我们取其中的最大值即为最终答案。

代码实现时,我们可以仅设一个整数变量curMaxSum即可,无需设maxSum数组。同时我们设另一个整数变量res来维护遍历中的最大值。最后返回最大值res。

时间复杂度为O(n)。下面是Python代码实现:

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        curMaxSum=nums[0]
        res=curMaxSum
        n=len(nums)
        for i in range(1, n):
            curMaxSum=nums[i]+curMaxSum if curMaxSum > 0 else nums[i] 
            res=max(res, curMaxSum) 
        return res

关键词: 动态规划

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值