RepVGG论文解读

RepVGG提出了一种结构重参数化方法,将训练时的多分支结构转换为推理时的单路径,相比ResNet和EfficientNet,具有更快的速度和相似或更好的精度,同时减少参数量。论文通过实验验证了FLOPs并非衡量速度的唯一标准。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2021

RepVGG: Making VGG-style ConvNets Great Again

本质就是结构重参数化,将训练时的多分支结构等效为推理时的单路径结构。

Abstract

与ResNet比速度(精度稍微超出一点的前提下),与EfficientNer比速度-精度的平衡

Introduction

论述当前模型的重心都是增加模型的复杂度,并分析了这样做的缺点,增大内存。

提出FLOPs(浮点运算数量,越小越好)不能完全反映模型的实际速度,后面内容有对此部分的呼应。

说明RepVGGd的优点:类似VGG,没有侧分支;构成简单,3*3卷积和ReLU;没有其他的复杂设计。

论述RePVGG的提出思路:多分支对训练很有帮助,但是推理速度会变慢 ,将训练的多分支在推理时等效为单路径。

上图中的identity为恒等映射

Related Works

从单路径到多分支:论述多分支结构模型的缺点

单路径模型有效训练:之前的单路径模型的论述,初心是便于模型收敛,而不是取得更高的性能

模型重参数化:介绍一些模型重参数化的方法,论述与本论文方法的不同

Model

使用简单卷积神经网络的原因:快;内存经济;灵活。

快:访问内存的开销和并行度,多分支增大内存开销,相同FLOPs下,并行度越高速度越快。

内存经济:多分支结构增加内存,每一个分支需要保留到全部相加之后再释放。

灵活:多分支结构限制了架构和模型剪枝。

训练时采用多分支结构

推理时重参数化

参考视频【14.1 RepVGG网络讲解】 ,14.1 RepVGG网络讲解_哔哩哔哩_bilibili

参考博客RepVGG网络简介_太阳花的小绿豆的博客-CSDN博客

大体过程:先将每条支路的卷积层(无偏置)和BN层合为一个新的带偏置的卷积层,再将新的卷积层等效转化为3*3的卷积层,最后将各支路卷积层合并为单路径的卷积层。

合并卷积层(无偏置)和BN层

合并后的权重和偏置

将合并后的1*1卷积转化为3*3卷积,注意padding变化 ,以此保证输出不变

将BN层转化成3*3卷积,注意padding变化 ,以此保证输出不变

最终等价效果

论文中重参数化结构图

Experiments

下图为分类实验,对比可以看出,RepVGG的精度更高,速度更快,参数量更少。

理论FLOPs比EfficientNet多,但是速度和精度RepVGG更高,验证了论文前面说的FLOPs并不能准确反映实际速度。

消融实验

Conclusion

回应Abstract

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值