Identity branch
就是恒等映射,来自ResNet
FLOPs
浮点运算次数,越小越好
组卷积 Group convolution
将输入层的不同特征图进行分组,然后采用不同的卷积核再对各个组进行卷积,可以降低卷积的计算量
假设输入特征图的通道是C1,输出特征图的通道是C2,
假设卷积核的长宽为H和W,则卷积核的通道数为C1,卷积核的数量为C2
则常规卷积的参数量为C1*H*W*C2
分组卷积(假设分为N组),每组卷积核的通道数为C1/N,每组卷积核的数量为C2/N
则分组卷积的参数量为C1/N *H*W* C2/N
对比可知,分组卷积的参数量为常规的 N分之一
C1=N=C2时,引申出深度分离卷积,
此时卷积核的每组通道数为1,输入通道数等于输出通道数等于分组数。
个人理解是输入特征图的第i层通道和卷积核对应的第i层通道进行计算,输出计算后的特征图的第i层通道,以此也可知卷积核的每组通道数为1,输入通道数等于输出通道数等于分组数(也就是卷积核的通道数)。
结合PW卷积,可以进一步降低卷积的计算量