RepVGG论文中的相关知识点

本文介绍了恒等映射在ResNet中的应用,以及组卷积(GroupConvolution)的概念,包括其如何通过分组降低计算量。深度分离卷积在C1=N=C2时的应用被详细阐述,同时结合PW卷积进一步减小了计算复杂度。文中还提供了计算量对比的链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Identity branch

就是恒等映射,来自ResNet

FLOPs

浮点运算次数,越小越好

组卷积 Group convolution

将输入层的不同特征图进行分组,然后采用不同的卷积核再对各个组进行卷积,可以降低卷积的计算量

假设输入特征图的通道是C1,输出特征图的通道是C2,

假设卷积核的长宽为H和W,则卷积核的通道数为C1,卷积核的数量为C2

则常规卷积的参数量为C1*H*W*C2

分组卷积(假设分为N组),每组卷积核的通道数为C1/N,每组卷积核的数量为C2/N

则分组卷积的参数量为C1/N *H*W* C2/N

对比可知,分组卷积的参数量为常规的  N分之一

参考链接:【精选】【深度学习】Group Convolution分组卷积、Depthwise Convolution和Global Depthwise Convolution_超级无敌陈大佬的跟班的博客-CSDN博客

C1=N=C2时,引申出深度分离卷积,

此时卷积核的每组通道数为1,输入通道数等于输出通道数等于分组数。

个人理解是输入特征图的第i层通道和卷积核对应的第i层通道进行计算,输出计算后的特征图的第i层通道,以此也可知卷积核的每组通道数为1,输入通道数等于输出通道数等于分组数(也就是卷积核的通道数)。

结合PW卷积,可以进一步降低卷积的计算量

计算量对比:https://blog.csdn.net/weixin_42206075/article/details/121610712?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522169820564616800213050544%2522%252C%2522scm%2522%253A%252220140713.130102334..%2522%257D&request_id=169820564616800213050544&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~all~baidu_landing_v2~default-4-121610712-null-null.142^v96^pc_search_result_base4&utm_term=depthwise%20convolution&spm=1018.2226.3001.4187

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值