动态规划之最长公共子序列(LCS)

题目描述:

Alt

动态规划实现

输入输出:

n, m表示A,B字符串的长度

char A[N], B[N]存A,B字符串

输出:

dp[n][m]

dp[i][j]表示A的长度为i, B的长度为j时,LCS的值。

我们可以用dp[i][j]递归定义,然后自底向上求解dp[n][m],即长度为n的A与长度为m的B的LCS。

思路:
1.刻画最优子结构
2.递归(自顶向下)定义最优值:

我们用LCS(i ,j )表示A的长度为i, B的长度为j时的LCS
最重要的一步

本题中,考虑A数组长度为i,B数组长度为j的情况时,

如果A[i] = B[j],那么问题可以规约成求LCS(i -1, j -1),有

LCS(i, j) = LCS(i - 1, j - 1) + 1

如果A[i] != B[j], 那么LCS(i, j) 可以规约为求LCS(i, j - 1)和LCS(i - 1, j)的最大值

LCS(i, j) = max(LCS(i - 1, j), LCS(i, j -1))

    for (int i = 1; i <= n; i ++)
        for (int j = 1; j <= m; j ++)
            {
                if (a[i] == b[j]) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
3.自底向上迭代计算最优值:

这一步需要注意初始化条件,比如在本题中,我们需要初始化dp数组,

for (int i = 1; i <= m; i ++)   dp[0][m] = 0;
for (int i = 1; i <= n; i ++)   dp[n][0] = 0;

代表A的长度为0,B的长度为0到m时,LCS为0;

A的长度为0到n时,B的长度为0时,LCS为0;

4.构造最优解(一般就是我们计算得到的)

在本题中最优解就是LCS的长度,即LCS(n, m)但如果需要给出公共子序列,那么就需要额外构造最优解。

本题代码:

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 1010;

char a[N], b[N];
int n, m;
int dp[N][N];

int main()
{
    cin >> n >> m >> a + 1 >> b + 1;
    
    for (int i = 1; i <= m; i ++)   dp[0][m] = 0;
    for (int i = 1; i <= n; i ++)   dp[n][0] = 0;
    
    for (int i = 1; i <= n; i ++)
        for (int j = 1; j <= m; j ++)
            {
                if (a[i] == b[j]) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
            
    cout << dp[n][m];
    
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值