MIT线代笔记(三)矩阵乘法与逆矩阵

本文介绍了矩阵乘法的基本定义,包括点乘的概念及其与矩阵乘法的关系,以及矩阵可逆的条件。同时,讲述了如何通过高斯若尔当消元法计算矩阵的逆矩阵,强调了矩阵的线性组合和行列式的角色。
摘要由CSDN通过智能技术生成

矩阵乘法:

定义:

给定矩阵A(m×n),B(n×p),则A* B = C(m×p)

1.点乘:规定cij= ∑ \sum (aik bkj), 其中1 ≤ \leq k ≤ \leq n,cij为矩阵C第i行第j列的元素。

形如n维向量点乘a·b = ∑ \sum aibi的形式,故称之为点乘。
实质上,矩阵即为向量的推广形式

2.矩阵C的列的线性组合是矩阵A的列的线性组合
3.矩阵C的行的线性组合是矩阵B的行的线性组合

2、3可理解为左行右列准则

4.定义:矩阵A的列向量ai(m×1)与矩阵B的行向量bi(1×n)相乘,得到矩阵Ci(m×n) ,则矩阵C = ∑ \sum Ci

而A的行向量与B的列向量相乘,会得到一个数,即定义1中的点乘。

5.分块:将A和B矩阵分块,分块后进行点乘

矩阵的逆:

定义:若矩阵的逆存在,则AA-1 = A-1A = E

注:可逆矩阵与非奇异矩阵同义,不可逆矩阵与奇异(singular)矩阵同义。
可证明,矩阵的逆矩阵唯一。

矩阵可逆的充要条件:

以下几种说法等价
1.|A| ≠ \neq = 0 ,即A的行列式为0
2.矩阵A不存在非零行或是非零列,
3.矩阵的各向量线性无关(线性相关则会产生零向量)

高斯若尔当消元法:

即高斯消元法的矩阵形式:
考虑增广矩阵[A| I],对其进行高斯消元后得到矩阵[I|B],则B为A的逆矩阵
原理:高斯消元是对矩阵进行的初等行变换,等价于A左乘若干变换矩阵Eij
若 EA = I,
则 E = A-1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值