光伏功率预测数据集哪里找?

随着光伏产业的迅猛发展,光伏功率预测作为提高光伏发电效率和稳定性的关键技术之一,逐渐受到广泛关注。光伏功率预测数据集作为预测模型的重要支撑,其获取方法成为研究和应用的关键环节。 

在获取光伏功率预测数据集时,有多种方法可供选择。一种常见的方法是直接从光伏电站获取实时数据。这种方法的优点在于数据真实可靠,能够反映电站实际运行状况;但缺点是需要与电站运营方进行合作合作难度较大,需要耗费较多时间和精力进行沟通和协调。

另一种方法是通过公开渠道获取光伏功率预测数据集。例如,一些科研机构、政府部门或行业协会会定期发布光伏电站的运行数据,这种方法的优点在于数据获取相对容易,且可以涵盖多个电站和多种环境条件下的数据;但缺点是数据的真实性和完整性可能存在一定的不确定性。

除了以上两种方法外,还有一些其他途径可以获取光伏功率预测数据集。例如,一些商业公司或研究机构会提供光伏功率预测数据集的服务,他们通常会根据客户需求收集、整理和分析数据,并提供定制化的数据集解决方案。此外,一些开源社区或平台也提供了光伏功率预测数据集的共享和下载服务,这些资源对于研究者来说具有一定的参考价值。

这里为需求者们提供专业的平台羲和能源气象大数据平台,可以根据气象数据,模拟在某个地理位置预设光伏电站,或还原某光伏电站的历史发电功率曲线。通过明确地点、时间、数据源及光伏电站参数,可以得到精准的小时级功率曲线。

并且可以根据历史多个气象数据,精准计算地区光照资源,并给出光伏最优建设方案。结合拟建设电站参数,一键生成光伏电站项目建议书/申请书,极大降低工程前期难度。

查询步骤

数据来源:平台

一、平台进行地理位置选择,可选择全球任意单点数据或区域平均数据,也可在地图中手动定位

 二、确认数据源,历史数据可选择羲和数源、欧洲中期天气中心、NASA;预测数据可选择德国气象局

 

三、输入起止时间,可选历史40年未来7日

 

四、在光伏发电板块查询发电功率,也可进行光伏发电系统高级设置,下载项目建议书 

 

 

推荐,光伏技术和资料合集,主要包含如下内容: pvsyst-太阳能光伏系统设计软件 PV连接器和接线盒标准介绍 IEC对接线盒和连接器的重测要求 微电网接入配电网测试规范 光伏发电站并网运行控制规范 分布式电源并网运行控制规范 油浸式电力变压器技术参数和要求 220kV~750kV电网继电保护装置运行整定规程 国家电网公司继电保护培训教材(上册) 硅片切割工艺及发展趋势 光伏组件用EVA 详细介绍 光伏组件白色线条(静电纹)成因探讨 光伏组件安装程序手册 光伏运行规程 光伏系统中,原电力降压变压器能否做升压用 光伏系统设计 光伏土建质量验评 光伏土建划分 光伏逆变器电路图及原理介绍 光伏建筑一体化常见问题及解决方法 光伏建筑一体化(BIPV)行业研究报告 光伏各城市补贴 光伏高压电气接入 光伏分布式发电收益 光伏发电站监控系统技术要求 光伏发电预测方法简析 光伏发电前期准备工作 光伏发电企业安全生产标准化创建规范 光伏电站行行色色的质量隐患 光伏电站设计规范 光伏电池最大功率点跟踪方法的研究 光伏典型设计 分布式光伏开发流程图 分布式光伏发电接入系统典型设计 分布式光伏并网技术难点分析 分布式光伏&农业大棚备案需要资料(大全) 分布式发电与微电网技术-电子版 分布式电源接入系统典型设计 二次系统现场调试流程及常用测试仪器与软件 二次回路识图及故障查找与处理 电站设计与电气原理图 电力建设工程质量监督检查典型大纲(光伏发电部分) 地面用光伏系统 35kV光伏系统一次系统图 10MW太阳能光伏电站预选方案设计 5MW大型并网光伏电站技术方案 330kV~750kV智能变电站设计规范
### 关于光伏功率预测数据集 对于光伏功率预测的研究,数据集的选择至关重要。通常情况下,这类数据集应包含历史天气条件、太阳辐射强度以及实际发电量等多个维度的信息。公开可用的相关数据集可以从多个渠道获取。 #### 常见的光伏功率预测数据源 1. **NREL (National Renewable Energy Laboratory)** 提供了一系列关于可再生能源的数据资源,其中包括太阳能发电站的历史记录和实时监测数据[^1]。 2. **PVLib Toolbox** 是一个由Pandas库扩展而来的工具包,专门用于处理与光伏发电有关的时间序列数据。虽然本身不是数据库,但它提供了接口来访问一些公共的气象服务API,从而可以收集到适合做训练使用的数据集[^3]。 3. **Kaggle平台上的竞赛项目** 经常会发布带有标签的真实世界案例作为比赛的一部分,在这里也能找到不少高质量的小规模样本集合,非常适合用来测试算法性能[^4]。 4. **UCI Machine Learning Repository** 收录了一个名为“Solar Power Generation Data”的数据集,该数据集中包含了来自日本某处安装有太阳能板的家庭用户的每小时用电情况及其环境参数测量值,是一个不错的选择。 为了更好地利用上述提到的各种数据源构建TCN模型来进行光伏功率预测,建议先下载所需时间段内的原始资料,并对其进行预处理操作,比如缺失值填补、异常检测等。之后再按照特定的任务需求调整输入特征向量的形式以便适配所选用的具体框架或库函数的要求。 ```python import pandas as pd from pvlib import solarposition, clearsky, atmosphere # 加载本地CSV文件或其他形式存储的数据表 data = pd.read_csv('path_to_your_dataset.csv') # 计算天文位置信息和其他辅助变量... sun_position = solarposition.get_solarposition(data.index, latitude=..., longitude=...) clear_sky_model = clearsky.ineichen(apparent_zenith=sun_position['apparent_zenith'], airmass_absolute=atmosphere.relativeairmass(sun_position['apparent_elevation'])) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值