BP神经网络在处理多输入多输出非线性问题上具有一定的优势
其应用目前较为成熟,具体主要分为以下步骤
1.数据读取
2.划分训练集、测试集
3.输入输出、隐层数量、节点数量设置
4.数据归一化
5.构建网络与参数配置
6.模型训练
7.反归一化
下面展示离线训练结果
1.多输入单输出


2.多输入多输出


3.simulink在线调用

在线调用结果展示

代码具有可复制性,可根据需要对应修改直接应用,不做展示。
文章介绍了BP神经网络在处理复杂非线性问题上的应用,详细阐述了从数据读取、训练集划分到模型训练的步骤,包括数据预处理、网络结构设定以及使用Simulink进行在线调用的实践,展示了多输入单输出和多输入多输出的结果,强调代码的可复用性。
BP神经网络在处理多输入多输出非线性问题上具有一定的优势
其应用目前较为成熟,具体主要分为以下步骤
1.数据读取
2.划分训练集、测试集
3.输入输出、隐层数量、节点数量设置
4.数据归一化
5.构建网络与参数配置
6.模型训练
7.反归一化
下面展示离线训练结果
1.多输入单输出


2.多输入多输出


3.simulink在线调用

在线调用结果展示

代码具有可复制性,可根据需要对应修改直接应用,不做展示。
1313
663
2445

被折叠的 条评论
为什么被折叠?