吴恩达 机器学习 第一部分 第3章 学习笔记

本文介绍了线性回归模型的基本概念,包括训练数据集、输入变量、输出变量和样本总数。接着详细阐述了代价函数,用于衡量模型预测值与实际值的差距。通过对代价函数的分析,探讨了如何找到最小化误差的权重和截距,展示了代价函数的图像和最小值点的求解过程。
摘要由CSDN通过智能技术生成

说明:本文为本人学习本课程的笔记,课程链接为

【(强推|双字)2022吴恩达机器学习Deeplearning.ai课程】

https://www.bilibili.com/video/BV1Pa411X76sp=8&vd_source=1a7101e2cd4837c57a0824d2cc5a5e56

如需要更深层次地掌握知识,请自行学习视频课程。

第三章 线性回归模型

 3.1 线性回归模型的定义

 回归模型的作用在于预测对于某个输入值的应有输出值。如下图,下图体现了某地区房屋面积与售价的关系。

 下面明确几个在回归模型中的常用概念。 

1.训练数据集(Trainning Set):训练数据集是用来训练模型的数据。如上图左边的表格,共有2列,47行。

2.输入变量/特征(Input Variable/Feature):用x表示,如上表的第一列,表示了该地区房屋面积。

3.输出变量/目标(Output Variable/Target):用y表示,如上表的第二列,表示了该地区房屋售价。

4.样本总数:用m表示,能够看出,m=47。

5.单个训练数据:(x,y)表示,其中 (x^{(i)},y^{(i)}),i\leq m 表示第i个训练数据

 将训练数据集(Training Set)输入到学习算法(Learning Algorithm)中,就得到了回归模型(Model)。

回归模型用 f 表示,写作 \hat{y}=f(x)

对回归模型输入样本特征(Feature),就能够得到目标输出(Target)的估计值(Estimated y)

线性回归模型的表达式类似于一次函数,表示为:

\hat{y}=f_{w,b}(x^{(i)})=wx^{(i)}+b

这种回归模型又称为一元线性回归模型。

3.2 代价函数(Cost Function)公式

\hat{y}=f_{w,b}(x^{(i)})=wx^{(i)}+b,这里的w表示weight。

 定义代价函数:

J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)}-y^{(i)})^{2}

其中,\hat{y}^{(i)}-y^{(i)} 称为回归分析的误差(Error),分母中的系数2是为了方便微分。

代价函数的值是误差平方和的平均数的一半,表示了回归函数与实际值的差距大小。

考虑线性回归模型的表达式 \hat{y}=f_{w,b}(x^{(i)})=wx^{(i)}+b ,代价函数又可写作:

J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)}-y^{(i)})^{2}=\frac{1}{2m}\sum_{i=1}^{m}(wx^{(i)}+b-y^{(i)})^{2}

3.3 对代价函数进行分析

3.3.1 一元代价函数的图像

提出代价函数的目的是为了寻找合适的系数w、b,使得对于所有的(x^{(i)},y^{(i)}) , \hat{y^{(i)}}能够尽可能地接近y^{(i)}。也就是说,需要寻找代价函数的最小值 min_{(w,b)}J(w,b)

下面考虑 b=0 的情况,也就是 \hat{y}=f_{w}(x^{(i)})=wx^{(i)}

 如上图,此时的代价函数简化为 J(w)=\frac{1}{2m}\sum_{i=1}^{m}(wx^{(i)}-y^{(i)})^{2},寻找其最小值。

考虑如下样本:

取不同w值(w=0,0.5,1,1.5,2…),根据代价函数公式计算J(w)的值,将J视为w的函数,将对应的    (w,J(w)) 点画在下图所示的坐标系中,得到J(w)-w图像。

根据下图能够发现,J-w曲线是一个抛物线曲线,其最小值在w=1时取到,事实上,通过观察代价函数表达式J(w)=\frac{1}{2m}\sum_{i=1}^{m}(wx^{(i)}-y^{(i)})^{2},也能得到这一结论。

 3.3.2 代价函数的的最小值

代价函数的表达式为 J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)}-y^{(i)})^{2}=\frac{1}{2m}\sum_{i=1}^{m}(wx^{(i)}+b-y^{(i)})^{2}

下面,用 \sum A 表示 \sum_{i=1}^{m}a^{(i)} ,用 \sum A^{2} 表示 \sum_{i=1}^{m}(a^{(i)})^{2},用 \sum AB 表示 \sum_{i=1}^{m}a^{(i)}b^{(i)}

其中,a,b = x,y ; A,B=X,Y

求偏导数,有

 \frac{\delta J}{\delta w}=\frac{1}{2m}\sum_{i=1}^{m}\cdot 2(wx^{(i)}+b-y^{(i)})\cdot x^{(i)}=\frac{\sum X^{2}}{m}\cdot w+\frac{\sum X}{m}\cdot b-\frac{\sum XY}{m}

\frac{\delta J}{\delta b}=\frac{1}{2m}\sum_{i=1}^{m}\cdot 2(wx^{(i)}+b-y^{(i)})=\frac{\sum X}{m}\cdot w+\ b-\frac{\sum Y}{m}

求驻点,令\frac{\delta J}{\delta w}=\frac{\delta J}{\delta b}=0 ,解得

w_{0}=\frac{m\sum XY-\sum X\cdot \sum Y}{m\sum X^{2}-(\sum X)^{2}}

b_{0}=\frac{\sum Y}{m}-\frac{\sum X}{m}\cdot w_{0}

即唯一驻点坐标 (w_{0},b_{0})=(\frac{m\sum XY-\sum X\cdot \sum Y}{m\sum X^{2}-(\sum X)^{2}},\frac{\sum Y}{m}-\frac{\sum X}{m}\cdot w_{0})

容易验证,该点坐标对应的w、b值,即为使代价函数取最小值时的w、b值。

3.3.3 代价函数的图像

 如图,二元代价函数J(w,b) 的图像如图所示。这是一个抛物面,底部即为其最小值点。

将抛物面投影在xOy 平面上,即可得到等高线图,如图。

 对于任意一组w、b取值,其本身对应的代价函数值一一对应了抛物面或等高线上的一个点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值