了解时间复杂度以及时间复杂度的计算

时间复杂度是描述算法运行时间的函数,通常用大O符号表示,忽略低阶项和首项系数。大O标记法表示为O(n)。算法执行次数反映了时间复杂度,常数项、最高阶项决定了最终的时间复杂度。例如,常量复杂度为O(1),嵌套循环复杂度可能是O(n^2)、O(n^3)等。解题时需根据循环结构和执行次数估算时间复杂度。
摘要由CSDN通过智能技术生成

首先,什么叫时间复杂度?

时间复杂度是一个函数,它定性描述该算法的运行时间。这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐近的,亦即考察输入值大小趋近无穷时的情况。

简单来说,时间复杂度其实就是一个算法执行的次数。

在这里插入图片描述

另外时间复杂度要用大O标记法。

时间复杂度T(n)用O(n)的形式来表示,O(n)里面的n是一个函数。T(n)=O(F(n))。

 在这里插入图片描述

在这里插入图片描述

举几个计算时间复杂度的例子:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值