微服务架构(在现代企业中的典型应用)

微服务架构在现代企业中的典型应用
微服务架构在现代企业中广泛应用于支持复杂的业务需求和快速变化的市场环境。由于其灵活性、可扩展性和独立部署的特性,微服务架构适合许多行业和场景,包括电商平台、金融服务、物流、互联网服务等。

  1. 电商平台
    电商平台的业务复杂,包含订单管理、支付、库存、用户管理等多个功能模块。采用微服务架构可以将每个业务模块独立为一个微服务,模块间通过 API 通信,方便系统的扩展和维护。

典型应用:京东、亚马逊等电商平台广泛采用微服务架构,将用户服务、商品服务、订单服务、支付服务等模块化,每个模块由独立的团队负责开发和维护,确保各模块在更新时不影响整体系统。
优势:
每个微服务可以独立部署和扩展,快速响应业务变化。
支持多团队并行开发,缩短开发周期。
某个微服务出现故障时,不影响其他服务的运行。
2. 金融服务
在金融领域,业务的高并发和高可用性是核心要求,微服务架构通过分布式的方式实现灵活的业务处理和容错机制。

典型应用:支付宝、PayPal 等支付系统将支付服务、账务服务、风控服务等功能分解为多个微服务,保证各模块的高可用性和安全性。
优势:
提升系统的可用性和安全性,关键业务模块独立部署,不易受到单点故障的影响。
可通过负载均衡等方式应对高并发,确保支付和交易服务的可靠性。
灵活应对不同国家和地区的合规需求。
3. 互联网服务
互联网服务(如流媒体、社交平台、在线教育等)通常面临海量用户访问和数据处理需求,微服务架构能够帮助企业高效应对复杂的业务场景,确保系统的可扩展性和稳定性。

典型应用:Netflix 作为微服务架构的典型代表,通过将视频流、用户管理、推荐算法、支付模块分离为独立的微服务,每个服务都能根据流量进行独立扩展,满足全球用户的需求。
优势:
可根据业务流量动态扩展某些高负载服务,提升系统的性能和用户体验。
各个模块可以独立优化,提升服务的敏捷性和性能。
4. 物流行业
物流行业需要处理大量的实时订单、配送路线规划、仓储管理和用户信息。微服务架构可以让不同的功能模块独立部署和开发,提升业务灵活性。

典型应用:顺丰、UPS 等物流公司采用微服务架构管理订单处理、仓储、配送、路线优化等业务流程。
优势:
能根据季节性变化或促销活动动态调整订单处理能力,保障系统的稳定运行。
不同的服务可以单独进行优化和升级,提升业务响应速度。
5. 数字化转型中的大型企业
大型企业在进行数字化转型时,需要快速迭代和部署新的功能和服务,微服务架构能够帮助企业拆分传统的单体架构,提升创新速度和响应市场变化的能力。

典型应用:像华为、联想等传统企业在转型过程中,通过微服务架构实现 IT 系统的敏捷化。企业利用微服务架构可以将传统 ERP、CRM 系统分解为多个独立服务,各自优化和升级,满足新的业务需求。
优势:
通过微服务的解耦,减少系统的复杂性,降低维护成本。
支持混合云或多云部署,灵活选择不同的服务提供商。
6. 游戏行业
在游戏开发和运营过程中,服务器的可扩展性和服务的稳定性至关重要。微服务架构允许游戏公司根据玩家的数量和游戏活动的流量高峰调整服务的负载。

典型应用:腾讯、动视暴雪等公司使用微服务架构来支持大型多人在线游戏,确保游戏服务器能够动态扩展,处理大量的玩家请求,同时保证各个功能(如用户登录、匹配系统、社交功能、支付系统等)互不影响。
优势:
动态扩展游戏服务器,提升玩家的在线体验。
某个服务出现问题时,不会影响其他模块的稳定性。
微服务架构在企业中的优势
独立部署与扩展:每个服务可以独立部署和扩展,根据业务需求单独进行优化。
团队独立开发:多个团队可以同时开发不同的服务,缩短开发周期。
弹性与容错:服务通过负载均衡、自动化扩展等方式实现弹性扩展,确保系统的高可用性。
技术栈自由选择:不同的微服务可以使用不同的技术栈,允许团队根据需求选择最佳工具。
微服务架构在企业中的挑战
服务管理复杂性增加:微服务数量增多后,服务间的管理和协同变得更加复杂。
数据一致性问题:跨多个服务的数据一致性管理变得困难,可能需要引入分布式事务或事件驱动架构。
运维要求高:微服务架构对监控、日志、部署和故障恢复提出了更高的要求,需要专业的 DevOps 团队。
通过应用微服务架构,企业能够快速响应市场需求,并提高系统的弹性和稳定性。然而,企业在实施微服务时也需要处理好复杂的服务管理和运维问题,以确保系统的顺畅运行。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值