报错:
requests.exceptions.ConnectionError: HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /prithivida/flashrank/resolve/main/ms-marco-MiniLM-L-12-v2.zip (Caused by NewConnectionError('<urllib3.connection.HTTPSConnection object at 0x7fdb6f87edc0>: Failed to establish a new connection: [Errno 101] Network is unreachable'))
首先,进入到FlashrankRerank的源码部分,找到这句代码
values["client"] = Ranker(model_name=values["model"])
然后,进入到Ranker源码部分,在import部分,找到这句:
from flashrank.Config import default_model, default_cache_dir, model_url, model_file_map, listwise_rankers
其中有个default_cache_dir,进入里面:
model_url = 'https://huggingface.co/prithivida/flashrank/resolve/main/{}.zip'
listwise_rankers = {'rank_zephyr_7b_v1_full'}
default_cache_dir = "/tmp"
default_model = "ms-marco-TinyBERT-L-2-v2"
model_file_map = {
"ms-marco-TinyBERT-L-2-v2": "flashrank-TinyBERT-L-2-v2.onnx",
"ms-marco-MiniLM-L-12-v2": "flashrank-MiniLM-L-12-v2_Q.onnx",
"ms-marco-MultiBERT-L-12": "flashrank-MultiBERT-L12_Q.onnx",
"rank-T5-flan": "flashrank-rankt5_Q.onnx",
"ce-esci-MiniLM-L12-v2": "flashrank-ce-esci-MiniLM-L12-v2_Q.onnx",
"rank_zephyr_7b_v1_full": "rank_zephyr_7b_v1_full.Q4_K_M.gguf"
}
结合“model_url”和“model_file_map”,从网上把模型下载到本地。
如果愿意修改“default_cache_dir”这个参数,修改为下载到自己本地的模型路径,那么可以解决问题。
或者也可以修改FlashrankRerank的源码部分:(以下是我修改的部分)
from __future__ import annotations
from typing import TYPE_CHECKING, Dict, Optional, Sequence
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import Document
from langchain_core.pydantic_v1 import Extra, root_validator
from langchain.retrievers.document_compressors.base import BaseDocumentCompressor
if TYPE_CHECKING:
from flashrank import Ranker, RerankRequest
else:
# Avoid pydantic annotation issues when actually instantiating
# while keeping this import optional
try:
from flashrank import Ranker, RerankRequest
except ImportError:
pass
DEFAULT_MODEL_NAME = "ms-marco-MultiBERT-L-12"
class FlashrankRerank(BaseDocumentCompressor):
"""Document compressor using Flashrank interface."""
client: Ranker
"""Flashrank client to use for compressing documents"""
top_n: int = 3
"""Number of documents to return."""
model: Optional[str] = None
"""Model to use for reranking."""
cache_dir: Optional[str] = None # 增加 cache_dir 字段
"""源码居然无法自己指定已经下载好的模型路径,那只有自己写了"""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from flashrank import Ranker
except ImportError:
raise ImportError(
"Could not import flashrank python package. "
"Please install it with `pip install flashrank`."
)
values["model"] = values.get("model", DEFAULT_MODEL_NAME)
values["cache_dir"] = values.get("cache_dir", None)
if values["cache_dir"] is not None:
values["client"] = Ranker(model_name=values["model"], cache_dir=values["cache_dir"])
else:
values["client"] = Ranker(model_name=values["model"])
return values
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
passages = [
{"id": i, "text": doc.page_content, "meta": doc.metadata}
for i, doc in enumerate(documents)
]
rerank_request = RerankRequest(query=query, passages=passages)
rerank_response = self.client.rerank(rerank_request)[: self.top_n]
final_results = []
for r in rerank_response:
metadata = r["meta"]
metadata["relevance_score"] = r["score"]
doc = Document(
page_content=r["text"],
metadata=metadata,
)
final_results.append(doc)
return final_results
然后在调用的时候,多一个cache_dir参数,就是你模型的本地路径:
compressor = FlashrankRerank(model="ms-marco-MiniLM-L-12-v2",
cache_dir="/data1/txy/Match/First use of LLM+RAG or Fine-turn/Dependence")
问题就解决了

被折叠的 条评论
为什么被折叠?



