数列,通项:
数列极限的 ϵ ∼ N \epsilon \sim N ϵ∼N 定义
一般定义:
若数列没有极限,则称不收敛或发散;
无穷小数列:
极限唯一性:若数列收敛,则该数列只有一个极限;
因为数列的起始位置 a 1 a_1 a1是可度量的;
数列的保号性:
数列的保不等式性:
数列的迫敛性,夹逼定理:
单调有界定理:
致密性定理:
柯西收敛准则:
本文概述了数列极限的基本概念,包括极限的定义、数列是否收敛的概念、无穷小数列的特性、极限的唯一性以及一系列关键定理如保号性、保不等式性、迫敛性(夹逼定理)、单调有界和致密性定理,以及柯西收敛准则。
数列,通项:
数列极限的 ϵ ∼ N \epsilon \sim N ϵ∼N 定义
一般定义:
若数列没有极限,则称不收敛或发散;
无穷小数列:
极限唯一性:若数列收敛,则该数列只有一个极限;
因为数列的起始位置 a 1 a_1 a1是可度量的;
数列的保号性:
数列的保不等式性:
数列的迫敛性,夹逼定理:
单调有界定理:
致密性定理:
柯西收敛准则:
104
1179

被折叠的 条评论
为什么被折叠?
>