01背包问题介绍
在01背包问题中,给定一组物品,每个物品有对应的重量和价值,以及一个固定的背包容量。问题的目标是选择一些物品放入背包中,使得放入的物品总重量不超过背包容量,并且总价值最大化。(注意:在01背包问题中,每个物品只能用一次)
本次讨论假设背包的最大重量为6,且有以下物品:
- 物品1:重量1,价值3
- 物品2:重量3,价值2
- 物品3:重量6,价值5
解题方法
我们可以使用动态规划来解决01背包问题。
定义一个二维数组 dp[i][j] 表示在考虑前 i 个物品,并且背包容量为 j 时,可以获得的最大价值。(注意这里dp数组的含义)
状态转移方程
状态转移方程如下:
- 当第
i个物品不放入背包时,dp[i][j] = dp[i-1][j]。 - 当第
i个物品放入背包时,dp[i][j] = dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
步骤演示
让我们通过一个步骤演示来解决这个问题:
- 表格中第一行表示背包容量为0时,无论有多少物品,背包的价值都为0。
- 表格中第一列表示没有物品可选择时,无论背包容量多大,背包的价值都为0。
- 从第二行第二列开始填表,我们按照状态转移方程来计算每个单元格的值。
- 对于每个物品,我们考虑放入或不放入背包的两种情况,选择其中价值更大的方案填入表格中。
首先先初始化dp数组:
物品 i \ 背包容量 j | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | ||||||
| 2 | 0 | ||||||
| 3 | 0 |
解释:
-
表格中第一行表示背包容量为0时,无论有多少物品,背包的价值都为0。
-
表格中第一列表示没有物品可选择时,无论背包容量多大,背包的价值都为0。
-
开始逐步填表格。首先考虑第一个物品1(重量1,价值3):
- 当背包容量为0时,无法放入物品1,所以背包价值为0。
- 当背包容量为1时,可以放入物品1,此时背包价值为3。
- 当背包容量为2时,无法放入物品1,因此背包价值继续为0。
- 以此类推填写第一行。
-
然后继续考虑第二个物品2(重量3,价值2)。按照状态转移方程填写表格:
- 当背包容量为0时,无法放入物品2,所以背包价值为0。
- 当背包容量为1时,无法放入物品2,因此背包价值继续为3。
- 当背包容量为2时,无法放入物品2,因此背包价值继续为3。
- 当背包容量为3时,可以放入物品2,此时背包价值为2(放入物品1和物品2的最大价值)。
-
最后考虑第三个物品3(重量6,价值5)。按照状态转移方程填写表格:
- 当背包容量为0时,无法放入物品3,所以背包价值为0。
- 当背包容量为1时,无法放入物品3,因此背包价值继续为3。
- 以此类推填写剩余单元格
| 物品 \ 背包容量 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 3 | 3 | 3 | 3 | 3 | 3 |
| 2 | 0 | 3 | 3 | 3 | 5 | 5 | 5 |
| 3 | 0 | 3 | 3 | 3 | 5 | 5 | 5 |
Java代码实现
下面是用Java实现的01背包问题的解法:
在这段代码中,weights 数组存储物品的重量,values 数组存储物品的价值,capacity 表示背包的容量。函数返回背包能够获得的最大价值。
public class Knapsack01 {
public int knapsack(int[] weight, int[] value, int capacity) {
int n = weight.length;
int[][] dp = new int[n + 1][capacity + 1];
// 遍历物品
for (int i = 1; i <= n; i++) {
// 遍历背包承重
for (int j = 1; j <= capacity; j++) {
// 如果当前物品重量大于背包承重,无法放入背包
if (weight[i - 1] > j) {
dp[i][j] = dp[i - 1][j];
} else {
// 取放入和不放入背包的最大值
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
}
}
}
// 返回结果
return dp[n][capacity];
}
public static void main(String[] args) {
Knapsack01 knapsack = new Knapsack01();
int[] weight = {1, 3, 6};
int[] value = {3, 2, 5};
int capacity = 6;
System.out.println(knapsack.knapsack(weight, value, capacity)); // 输出:5
}
}
1003

被折叠的 条评论
为什么被折叠?



