java 01背包问题

01背包问题介绍

在01背包问题中,给定一组物品,每个物品有对应的重量和价值,以及一个固定的背包容量。问题的目标是选择一些物品放入背包中,使得放入的物品总重量不超过背包容量,并且总价值最大化。(注意:在01背包问题中,每个物品只能用一次)

本次讨论假设背包的最大重量为6,且有以下物品:

  1. 物品1:重量1,价值3
  2. 物品2:重量3,价值2
  3. 物品3:重量6,价值5

解题方法

我们可以使用动态规划来解决01背包问题。
定义一个二维数组 dp[i][j] 表示在考虑前 i 个物品,并且背包容量为 j 时,可以获得的最大价值。(注意这里dp数组的含义)

状态转移方程

状态转移方程如下:

  • 当第 i 个物品不放入背包时,dp[i][j] = dp[i-1][j]
  • 当第 i 个物品放入背包时,dp[i][j] = dp[i-1][j-w[i]] + v[i],其中 w[i] 表示第 i 个物品的重量,v[i] 表示第 i 个物品的价值。

步骤演示

让我们通过一个步骤演示来解决这个问题:

  • 表格中第一行表示背包容量为0时,无论有多少物品,背包的价值都为0。
  • 表格中第一列表示没有物品可选择时,无论背包容量多大,背包的价值都为0。
  • 从第二行第二列开始填表,我们按照状态转移方程来计算每个单元格的值。
  • 对于每个物品,我们考虑放入或不放入背包的两种情况,选择其中价值更大的方案填入表格中。

首先先初始化dp数组:

物品 i \ 背包容量 j0123456
00000000
10
20
30

解释:

  • 表格中第一行表示背包容量为0时,无论有多少物品,背包的价值都为0。

  • 表格中第一列表示没有物品可选择时,无论背包容量多大,背包的价值都为0。

  • 开始逐步填表格。首先考虑第一个物品1(重量1,价值3):

    • 当背包容量为0时,无法放入物品1,所以背包价值为0。
    • 当背包容量为1时,可以放入物品1,此时背包价值为3。
    • 当背包容量为2时,无法放入物品1,因此背包价值继续为0。
    • 以此类推填写第一行。
  • 然后继续考虑第二个物品2(重量3,价值2)。按照状态转移方程填写表格:

    • 当背包容量为0时,无法放入物品2,所以背包价值为0。
    • 当背包容量为1时,无法放入物品2,因此背包价值继续为3。
    • 当背包容量为2时,无法放入物品2,因此背包价值继续为3。
    • 当背包容量为3时,可以放入物品2,此时背包价值为2(放入物品1和物品2的最大价值)。
  • 最后考虑第三个物品3(重量6,价值5)。按照状态转移方程填写表格:

    • 当背包容量为0时,无法放入物品3,所以背包价值为0。
    • 当背包容量为1时,无法放入物品3,因此背包价值继续为3。
    • 以此类推填写剩余单元格
物品 \ 背包容量0123456
00000000
10333333
20333555
30333555

Java代码实现

下面是用Java实现的01背包问题的解法:
在这段代码中,weights 数组存储物品的重量,values 数组存储物品的价值,capacity 表示背包的容量。函数返回背包能够获得的最大价值。

public class Knapsack01 {
    public int knapsack(int[] weight, int[] value, int capacity) {
        int n = weight.length;
        int[][] dp = new int[n + 1][capacity + 1];
        
        // 遍历物品
        for (int i = 1; i <= n; i++) {
            // 遍历背包承重
            for (int j = 1; j <= capacity; j++) {
                // 如果当前物品重量大于背包承重,无法放入背包
                if (weight[i - 1] > j) {
                    dp[i][j] = dp[i - 1][j];
                } else {
                    // 取放入和不放入背包的最大值
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]);
                }
            }
        }
        
        // 返回结果
        return dp[n][capacity];
    }
    
    public static void main(String[] args) {
        Knapsack01 knapsack = new Knapsack01();
        int[] weight = {1, 3, 6};
        int[] value = {3, 2, 5};
        int capacity = 6;
        System.out.println(knapsack.knapsack(weight, value, capacity)); // 输出:5
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BenChuat

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值