基于协同深度学习的智能购物推荐系统设计研究-毕业设计源码00127

摘  要

随着电子商务的快速发展,智能购物推荐系统在提升用户体验和促进商家销售方面发挥着越来越重要的作用。本文提出了一种基于协同深度学习的智能购物推荐系统设计方法,旨在通过深度学习技术与协同过滤算法的结合,为用户提供更加精准、个性化的商品推荐服务。该系统通过分析用户的浏览、收藏、购买等行为数据,以及商品属性、类别和销量等多维度信息,构建用户兴趣模型和商品特征模型,从而实现对用户偏好的精准预测。同时,系统还引入了深度神经网络以挖掘用户与商品之间的潜在关联,进一步提升推荐效果。

此外,本研究设计的智能购物推荐系统不仅关注推荐算法的优化,还注重系统的整体功能架构设计。系统包括用户端和管理员端两大模块,涵盖商品推荐、商城管理、订单处理和个人中心等功能,能够满足普通用户和管理员的多样化需求。实验结果表明,基于协同深度学习的推荐算法相较于传统方法,在推荐准确率和用户满意度上均有显著提升,为电子商务平台提供了更高效、更智能的解决方案。此研究为未来智能推荐系统的进一步发展奠定了基础,并具有广泛的应用前景。

关键词Django、智能购物推荐系统、库存管理

Abstract

With the rapid development of e-commerce, intelligent shopping recommendation system plays an increasingly important role in improving user experience and promoting business sales. This paper proposes a design method of intelligent shopping recommendation system based on collaborative deep learning, aiming to provide users with more accurate and personalized product recommendation services through the combination of deep learning technology and collaborative filtering algorithm. By analyzing users' behavioral data such as browsing, collection and purchase, as well as multi-dimensional information such as commodity attributes, categories and sales volume, the system builds user interest model and commodity feature model, so as to achieve accurate prediction of user preferences. At the same time, the system also introduces a deep neural network to explore the potential relationship between users and products, and further improve the recommendation effect.

In addition, the intelligent shopping recommendation system designed in this study not only focuses on the optimization of the recommendation algorithm, but also focuses on the overall functional architecture design of the system. The system includes two modules, client and administrator, covering the functions of product recommendation, mall management, order processing and personal center, which can meet the diversified needs of ordinary users and administrators. The experimental results show that compared with traditional methods, the recommendation algorithm based on collaborative deep learning has significantly improved the recommendation accuracy and user satisfaction, providing a more efficient and intelligent solution for e-commerce platforms. This research lays a foundation for the further development of intelligent recommendation system in the future, and has a wide application prospect.

Keywords: Django, Smart Shopping Recommendation System, python

               

目   录

摘  要

1 绪论

1.1 课题背景及研究意义

1.2研究现状与发展趋势

1.3 推荐系统概述

1.4 深度学习概述

2 系统开发环境

2.1 django框架

2.2 python语言

2.3 MySql数据库

3 需求分析

3.1技术可行性    

3.2经济可行性

3.3操作可行性

3.4系统用例分析

3.5系统设计规则

3.6系统流程分析

4系统概要设计

4.1 概述

4.2 系统结构

4.3. 数据库设计

4.3.1 数据库实体

4.3.2 数据库设计表

5 系统详细设计

5.1管理员功能模块

5.1.1系统管理

5.1.2通知公告管理

5.1.3资源管理

5.1.4商城管理

5.2普用户功能模块

5.2.1商城资讯

5.2.2购物商城

5.2.3商城管理

5.2.4个人中心

6 系统测试

6.1系统测试目的

6.2系统测试概述

6.3测试结果

结论

致 谢

参考文献

1 绪论

    1. 课题背景及研究意义

随着互联网技术的飞速发展,电子商务已成为现代商业的重要组成部分。据统计,2023年全球电子商务市场规模已突破5万亿美元,并预计在未来几年内继续保持增长趋势。然而,在海量商品信息面前,消费者往往面临选择困难的问题。为了提高用户体验和商家销售效率,个性化推荐系统应运而生。例如,张玮佳(2024)在其研究中指出,“通过个性化推荐系统可以显著提升消费者的购物体验,从而促进消费行为的发生”[1]。因此,设计一种高效、精准的智能购物推荐系统显得尤为重要。

本研究聚焦于基于协同深度学习的智能购物推荐系统的设计与实现,旨在解决传统推荐算法在处理复杂用户行为数据时的局限性。正如岳斌等人(2024)在《关于消费者使用AI推荐系统在线购买运动品牌意愿预测的研究》[2]中所提到的,AI推荐系统的应用不仅能够帮助企业更好地了解消费者需求,还能为用户提供个性化的购物建议。此外,钟美芳和何风琴(2024)进一步强调了个性化推荐系统对网络购物中消费者决策的影响,认为其能够有效缩短用户的决策时间并提高购买满意度[3]。这为本研究提供了重要的理论依据。

从实际应用的角度来看,智能购物推荐系统的发展对于推动电子商务行业的进步具有深远意义。一方面,它可以帮助企业优化资源配置,降低营销成本;另一方面,也能满足消费者日益增长的个性化需求,提升用户粘性。例如,朱育颉和刘虎沉(2021)在《网上购物平台多推荐融合算法研究》中提出了一种结合多种推荐算法的融合策略,以提高推荐结果的多样性和准确性[4]。这些研究成果表明,智能推荐系统的优化将对电子商务生态产生积极影响,这也是本研究的核心目标之一。

1.2研究现状与发展趋势

目前,个性化推荐系统的研究主要集中在协同过滤、内容过滤以及混合推荐算法等方面。其中,协同过滤是最常见的推荐方法之一,它通过分析用户的历史行为数据来预测其可能感兴趣的商品。例如,郭萍(2024)在其硕士论文《基于协同过滤推荐算法的种子交易系统》详细探讨了协同过滤算法的应用场景及其优缺点[5]。然而,传统的协同过滤算法存在冷启动问题和稀疏性问题,这些问题限制了其在大规模数据集中的表现。

近年来,深度学习技术的引入为推荐系统的研究带来了新的突破。Zunying X.(2024)在《Analysis of Intelligent Recommendation Systems and Consumer Behavior Theories on E-Commerce Platforms》[6]一文中指出,深度学习模型能够有效挖掘用户行为数据中的隐含特征,从而提升推荐效果。同时,Jansen Z.L.等人(2024)在《Online grocery shopping recommender systems: Common approaches and practices》[7]中也提到,基于神经网络的推荐系统在处理复杂的用户偏好方面具有显著优势。这些研究表明,深度学习技术正逐渐成为推荐系统领域的主流方向。

未来,智能购物推荐系统的发展趋势将更加注重算法的智能化和用户体验的优化。例如,邱红丽和张舒雅(2021)在《基于Django框架的web项目开发研究》[8]中提出,结合Web开发技术和推荐算法可以构建更加灵活的推荐系统架构。此外,刘柏森(2020)在《基于深度学习的购物情绪识别系统开发》[9]中探索了情绪分析技术在购物推荐中的应用,这一创新思路为推荐系统的个性化服务提供了新的可能性。综上所述,未来的推荐系统将朝着更精准、更智能的方向迈进,同时也需要不断优化用户体验以满足多样化的需求。

1.3 推荐系统概述

推荐系统是一种通过分析用户行为和偏好,为用户提供个性化内容或商品建议的技术工具,广泛应用于电子商务、社交媒体和视频平台等领域。其核心功能包括根据用户的兴趣与历史行为提供定制化建议、解决新用户或新物品的冷启动问题,以及在满足用户已有兴趣的同时探索并推荐新的内容。推荐系统主要基于协同过滤(分析用户或物品间的相似性)、基于内容的推荐(利用内容特征匹配用户偏好)、混合推荐(结合多种方法)以及深度学习(挖掘复杂关系)等技术实现。其应用场景涵盖电商领域的商品推荐、娱乐领域的电影音乐建议以及新闻资讯的内容推送等,旨在帮助用户从海量信息中快速找到感兴趣的内容,同时提升平台的用户满意度和商业价值。

1.4 深度学习概述

深度学习是机器学习的一个分支,基于人工神经网络的结构与功能,通过多层神经元的组合实现对复杂数据模式的学习与表示。它能够自动从大量数据中提取高层次特征,广泛应用于图像识别、自然语言处理、语音识别等领域。深度学习的核心在于构建深层网络模型(如卷积神经网络CNN、循环神经网络RNN和变压器Transformer等),并利用反向传播算法优化参数。相比传统机器学习方法,深度学习在处理非结构化数据时表现出显著优势,推动了人工智能技术的快速发展与实际应用。

2 系统开发环境

2.1 django框架

Django是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Dj ango框架中,还包含许多功能强大的第三方插件,使得Django具有较强的可扩展性。Django 项目源自一个在线新闻 Web 站点,于 2005 年以开源的形式被释放出来。Django 框架的核心组件有:

用于创建模型的对象关系映射

为最终用户设计较好的管理界面;

URL 设计;

设计者友好的模板语言;

缓存系统。

Django(发音:[`dʒæŋɡəʊ]) 是用python语言写的开源web开发框架(open source web framework),它鼓励快速开发,并遵循MVC设计。Django遵守BSD版权,初次发布于2005年7月, 并于2008年9月发布了第一个正式版本1.0 。

Django 根据比利时的爵士音乐家Django Reinhardt命名,他是一个吉普赛人,主要以演奏吉它为主,还演奏过小提琴等。

由于Django在近年来的迅速发展,应用越来越广泛,被著名IT开发杂志SD Times评选为2013 SD Times 100,位列“API、库和框架”分类第6位,被认为是该领域的佼佼者。

2.2 python语言 

早在上个世纪90年代,Python就由吉多·范罗苏姆进行创造,自诞生之日起,Python就一直深深的受到了程序开发者的广泛喜爱,它作为计算机主要的编程语言,一直到今。Python语言是真的是一种纯面向对象的计算机语言,在Python的世界中,所有的方法、数据类型、符号等都是以类的方式存在的,最顶层的就是Object,所有的类都是对object的继承。继承是Python中的核心思想,与C语言不同的是,子类只有一个父类,这样的好处就是操作更加的简便,让人更容易理解,在代码的书写上也会容易较多。Python另外一个特性就是多态性,调用父类接口的方法可以实现子类的实现,这样的好处就是很好的对实现方法进行了隐藏(封装),而且又能够把API进行公开,一举两得。接口思想很好的诠释了想象对象的思想,让面向对象编程渐渐转向面向接口编程。如今,随着编程思想的继续发展,Python也加入了一些函数式编程的思想,这样的好处就是让编程代码更加的简洁与方便。本管理系统采用Python编程语言进行后台的开发,一是鉴于标准化制定以后,Python语言常用于大型商业应用程序后台系统中,生态稳定;二是也希望通过本系统的开发提高自己编写Python代码的能力。

2.3 MySql数据库

数据库作为数据的存储地方是项目必须的,MySQL是一款非常优秀的关系型数据库,早期的MySQL并不是甲骨文公司的,后来才被他收购的。MySQL非常的小巧,安装包才几兆,sql语言的书写也比较容易学习,最重要的是MySQL同时也是一款开源的软件,所以不需要额外进行付费,本系统本身也是以学习总结所学知识为主,在系统的开发上最好尽量使用免费的软件,所以选用MySQL进行数据库管理。MySQL的容量也是非常大的,同时支持分库分表的操作,支持分布式,所以越来越多的中小企业选择该款数据库管理工具。另外值得一提的是,开源也有一个不好的地方,就是容易遭到破解和黑客攻击,所以MySQL在使用上还是更多的使用在中小项目中。

MySQL不会对平台有需求,所以任何一个程序员都可以通过 MySQL数据库来完成自己的系统开发,并且还可以节约大量的资源。因为它具有强大功能,所以可以用来储存这个系统的数据。

MySQL适合于各种应用,我们在运行数据库的时候,也很容易上手,我们只要编写一段代码,就可以完成相应的功能,并且可以在任何的平台上使用,而不需要再进行第二次的编译。MySQL数据库还具备在本地存储数据和允许结构化查询以方便管理的优势;MySQL是一个完全网络化的系统,它的数据库可以在互联网的任何位置被访问,它可以在任何地点与任何人分享;此外,MySQL也提供了存取控制的能力,可以阻止数据被非法使用,MySQL服务稳定,开发成本低,所以在开发过程中,MySQL数据库是最受欢迎的。

3 需求分析

3.1技术可行性    

Windows操作系统是智能购物推荐系统的核心,它的性能足以满足普通网站的web服务器需求,而且它采用的技术也是当下最为流行的,它们不仅拥有自身的特点,还能够满足不同的需求。

该系统采用python编程语言,并且搭载了Mysql数据库,能够支持快速、高效的数据传输,并且能够灵活地调整数据库的参数,满足不同的应用场景,保证了网站的高效率、高质量,最终达到了预期的效果。

(1)硬件可行性分析

系统管理和信息分析的设计并不需要特殊的计算机配置,只需要保证它们能够正常运行,并且能够满足基本的代码编写和页面设计需求。但是,在搭建平台时,需要考虑到服务器的安全性,并且确保网站的访问流畅,避免出现延迟等问题,以达到最佳的性价比;

(2)软件可行性分析

采用云计算技术构建的这一完善的系统,具备良好的可延展度,并且具备智能化的流量管理功能,从而确保数据的实时更新,并且确保系统的稳定、高效地运作。

经过全面的可行性分析,我们可以断定,该系统的开发完全符合预期,没有任何挑战。

3.2经济可行性

在开发智能购物推荐系统之前,我们通过对市场调研与其他相关管理系统的研究并没有花费任何费用。尽最大努力完成这些工作,并且会尽可能多地得到指导老师和同学的帮助。如果遇到一些棘手的问题,我们会尽最大努力去解决。因此,开发智能购物推荐系统在经济上是十分可行的,而且不需要投入任何资金。 

通过采用python和Mysql数据库,我们能够实现一个更加成熟的系统,而且这种系统的开发成本低廉,可以满足大多数的需求。

3.3操作可行性

经过优化的智能购物推荐系统,其可操作性得益于其出众的用户体验,无论是管理者还是普通用户,只要点击一下就能轻松访问,而不必担心无法正确地查看或处理所有的数据。此外,还提供了一个易懂的界面,让用户更加轻松地访问各个功能模块,从而更好地满足其日常的工作需求。通过采用友好的界面和快捷的输入方式,我们的智能购物推荐系统无论是初学者还是熟练的操作者,均可轻松实现各项功能,从而大大提高了其可操作性。

3.4系统用例分析

普通用户角色用例如图3-1所示。

图3-1 智能购物推荐系统普通用户角色用例图

具体功能如下:

(1)注册登录:用户可以通过注册成为系统用户,注册后可以用账号密码登录系统。

(2)首页:当用户进入智能购物推荐系统的时候,首先映入眼帘的是系统的首页、通知公告、商城资讯、购物商城、商城管理等信息。

(3)通知公告:用户点击可查看网站公告、关于我们、联系方式和网站介绍等信息,方便用户浏览了解系统公告信息。

(4)商城资讯:用户点击可查看商城咨讯,同时可对咨讯文章进行点赞、收藏和评论。

(5)购物商城:用户点击可通过搜索局部搜索进行查看商品列表,点击进入想要了解的物品可查看详情信息,可对商品进行收藏、评论、立即购买或加入购物车。

(6)商城管理:商城管理包含我的购物车、我的订单和我的地址,点击进入“我的地址”可填写地址信息,包括收件人、手机号和详细地址;点击进入“我的购物车”,可查看购物车商品列表,可对商品数量进行修改,同时可进行购买和删除操作;点击进入“我的订单”可查看订单列表和订单状态。

(7)我的账户:用户可以在个人账户中查看并管理自己的个人信息。包括个人资料、修改密码等。

(8)个人中心:个人中心包含多个功能模块,如个人首页、订单配送、收藏和评论管理。点击进入“订单配送”可查看配送状态和签收状态。点击进入“收藏”和“评论管理”可查看和管理历史留言、收藏和评论。

管理员角色用例如图3-2所示。

图3-2 智能购物推荐系统管理员角色用例图

具体功能如下:

(1)登录:管理员账号密码由系统生成,可使用账号密码可进行登录系统后台,使用系统功能进行管理,并可对自己的个人信息和密码进行管控。

(2)后台首页:管理员点击可查看商品销售数量和商品销售金额的数据统计图。

(3)系统用户:管理员可以查看系统用户(管理员、普通用户)列表中某个用户的详情,可以对用户信息进行查询、审核、添加和删除操作。

(4)系统管理:管理员点击可查看轮播图管理;如需添加新的轮播图,点击右侧“添加”按钮,上传图片,输入标题和链接,点击“确认”按钮进行添加,可对轮播图进行增删改查。

(5)通知公告管理:当管理点击“通知公告管理”时,可查看通知公告;如需添加新的公告信息,点击右侧“添加”按钮,输入标题和正文,点击“确认”按钮进行添加。

(6)资源管理:管理员点击可查看商城资讯和资讯分类;如需添加新的资讯,点击“添加”按钮,上传封面图,输入标题,选择分类,输入标签、描述和正文,点击“确认”按钮进行添加。同时可对资讯和分类行增删改查。

(7)商城管理:商城管理包含多个功能模块,如购物商城、分类列表、订单列表和订单配送。点击进入“订单列表”可查看用户下单信息,同时点击“配送”按钮进行商品配送;点击进入“订单配送”可对配送状态和签收状态进行修改。点击进入“购物商城”可添加新的商品信息,包括封面图、主图、标题、描述、原价、卖价、库存、分类、备注和正文。

3.5系统设计规则

通过使用python和Mysql数据库,我们的智能购物推荐系统能够提供高度稳定和完善的功能。

智能购物推荐系统的设计与实现的设计思想如下:

  1. 操作简单易行,系统界面安全可靠:清晰易懂的页面布局,让您轻松获取有关智能购物推荐系统的所有信息。

2、通过“即时发布、即时见效”,您可以立即获取有关智能购物推荐系统的信息,并且可以在任何地方轻松查询。

3.6系统流程分析

1)增加数据流程

系统中的所有用户(管理员和用户)都可以实现增加数据功能,图3-3显示的就是在增加数据时的流程。

图3-3增加数据流程图

2)修改数据流程

人无完人,每个人都有出错的时候,在录入系统信息的时候如果信息有错,可以对系统中的数据进行编辑。图3-4显示的就是修改数据的流程。

图3-5修改数据流程图

3)删除数据流程

在系统中经常会出现一些过期的数据,比如药品信息等,那就可以直接删除这些数据,图3-6就是删除数据时的流程图。

图3-6删除数据流程图

4系统概要设计

4.1 概述

Internet技术为智能购物推荐系统提供了一种全新的方法,它支持多种形态的网络应用,无论您身处何处,都可以轻松访问和操控该系统。此外,它还提供了一个简单易懂的操作流程,方便您快速、准确的完成任务。

图4-1  系统工作原理图

4.2 系统结构

本系统架构网站系统,本系统的具体功能如下:

图4-2系统功能结构图

系统的结构由多个功能模块构成,因此,我们需要把它们按照一定的顺序列出来,并且精心设计每个模块,以确保它们具备完整的功能,从而实现系统的完美结构。

系统功能模块图,如图4-3所示:

图4-3 系统功能模块图

4.3. 数据库设计

4.3.1 数据库实体

下面是整个智能购物推荐系统中主要的数据库表总E-R实体关系图。

图4-7 智能购物推荐系统总E-R关系图

4.3.2 数据库设计表

通过将E-R图转换为关系数据库,可以更好地理解数据之间的关联性,这种关联性可以通过表的形式来体现,其中每个表都包含了一个独立的字段。

表 4-1-access_token(登陆访问时长)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

token_id

int

临时访问牌ID

2

token

varchar

64

临时访问牌

3

info

text

65535

信息

4

maxage

int

最大寿命:默认2小时

5

create_time

timestamp

创建时间

6

update_time

timestamp

更新时间

7

user_id

int

用户编号

表 4-2-address(收货地址)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

address_id

int

收货地址

2

name

varchar

32

姓名

3

phone

varchar

13

手机

4

postcode

varchar

8

邮编

5

address

varchar

255

地址

6

user_id

mediumint

用户ID

7

create_time

timestamp

创建时间

8

update_time

timestamp

更新时间

9

default

tinyint

默认判断

表 4-3-article(文章)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

article_id

mediumint

文章id

2

title

varchar

125

标题

3

type

varchar

64

文章分类

4

hits

int

点击数

5

praise_len

int

点赞数

6

create_time

timestamp

创建时间

7

update_time

timestamp

更新时间

8

source

varchar

255

来源

9

url

varchar

255

来源地址

10

tag

varchar

255

标签

11

content

longtext

4294967295

正文

12

img

varchar

255

封面图

13

description

text

65535

文章描述

表 4-4-article_type(文章分类)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

type_id

smallint

分类ID

2

display

smallint

显示顺序

3

name

varchar

16

分类名称

4

father_id

smallint

上级分类ID

5

description

varchar

255

描述

6

icon

text

65535

分类图标

7

url

varchar

255

外链地址

8

create_time

timestamp

创建时间

9

update_time

timestamp

更新时间

表 4-5-auth(用户权限管理)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

auth_id

int

授权ID

2

user_group

varchar

64

用户组

3

mod_name

varchar

64

模块名

4

table_name

varchar

64

表名

5

page_title

varchar

255

页面标题

6

path

varchar

255

路由路径

7

parent

varchar

64

父级菜单

8

parent_sort

int

父级菜单排序

9

position

varchar

32

位置

10

mode

varchar

32

跳转方式

11

add

tinyint

是否可增加

12

del

tinyint

是否可删除

13

set

tinyint

是否可修改

14

get

tinyint

是否可查看

15

field_add

text

65535

添加字段

16

field_set

text

65535

修改字段

17

field_get

text

65535

查询字段

18

table_nav_name

varchar

500

跨表导航名称

19

table_nav

varchar

500

跨表导航

20

option

text

65535

配置

21

create_time

timestamp

创建时间

22

update_time

timestamp

更新时间

表 4-6-cart(购物车)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

cart_id

int

购物车ID

2

title

varchar

64

标题

3

img

varchar

255

图片

4

user_id

int

用户ID

5

create_time

timestamp

创建时间

6

update_time

timestamp

更新时间

7

state

int

状态:使用中,已失效

8

price

double

单价

9

price_ago

double

原价

10

price_count

double

总价

11

num

int

数量

12

goods_id

mediumint

商品id

13

type

varchar

64

商品分类

14

description

varchar

255

描述

表 4-7-code_token(验证码)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

code_token_id

int

验证码ID

2

token

varchar

255

令牌

3

code

varchar

255

验证码

4

expire_time

timestamp

失效时间

5

create_time

timestamp

创建时间

6

update_time

timestamp

更新时间

表 4-8-collect(收藏)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

collect_id

int

收藏ID

2

user_id

int

收藏人ID

3

source_table

varchar

255

来源表

4

source_field

varchar

255

来源字段

5

source_id

int

来源ID

6

title

varchar

255

标题

7

img

varchar

255

封面

8

create_time

timestamp

创建时间

9

update_time

timestamp

更新时间

表 4-9-comment(评论)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

comment_id

int

评论ID

2

user_id

int

评论人ID

3

reply_to_id

int

回复评论ID

4

content

longtext

4294967295

内容

5

nickname

varchar

255

昵称

6

avatar

varchar

255

头像地址

7

create_time

timestamp

创建时间

8

update_time

timestamp

更新时间

9

source_table

varchar

255

来源表

10

source_field

varchar

255

来源字段

11

source_id

int

来源ID

表 4-10-goods(商品信息)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

goods_id

mediumint

产品ID

2

title

varchar

125

标题

3

img

text

65535

封面图:用于显示于产品列表页

4

description

varchar

255

描述

5

price_ago

double

原价

6

price

double

卖价

7

sales

int

销量

8

inventory

int

商品库存

9

type

varchar

64

商品分类

10

hits

int

点击量

11

content

longtext

4294967295

正文

12

img_1

text

65535

主图1

13

img_2

text

65535

主图2

14

img_3

text

65535

主图3

15

img_4

text

65535

主图4

16

img_5

text

65535

主图5

17

create_time

timestamp

创建时间

18

update_time

timestamp

更新时间

19

customize_field

text

65535

自定义字段

20

source_table

varchar

255

来源表

21

source_field

varchar

255

来源字段

22

source_id

int

来源ID

23

user_id

int

添加人

表 4-11-goods_type(商品类型)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

type_id

int

商品分类ID

2

father_id

smallint

上级分类ID

3

name

varchar

255

商品名称

4

desc

varchar

255

描述

5

icon

varchar

255

图标

6

source_table

varchar

255

来源表

7

source_field

varchar

255

来源字段

8

create_time

timestamp

创建时间

9

update_time

timestamp

更新时间

表 4-12-hits(用户点击)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

hits_id

int

点赞ID

2

user_id

int

点赞人

3

create_time

timestamp

创建时间

4

update_time

timestamp

更新时间

5

source_table

varchar

255

来源表

6

source_field

varchar

255

来源字段

7

source_id

int

来源ID

表 4-13-logistics_delivery(物流配送)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

logistics_delivery_id

int

物流配送ID

2

order_number

varchar

64

订单号

3

product_name

varchar

64

商品名称

4

purchase_quantity

varchar

64

购买数量

5

total_transaction_amount

double

交易总额

6

the_date_of_issuance

date

发货日期

7

delivery_number

varchar

30

配送订单

8

ordinary_users

int

普通用户

9

shipping_address

varchar

64

收货地址

10

delivery_status

varchar

64

配送状态

11

signing_status

varchar

64

签收状态

12

recommend

int

智能推荐

13

contact_name

varchar

255

联系人名字

14

merchant_id

int

商家id

15

create_time

datetime

创建时间

16

update_time

timestamp

更新时间

表 4-14-mall(购物商城)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

mall_id

int

购物商城ID

2

remarks

varchar

64

备注

3

hits

int

点击数

4

collect_len

int

收藏数

5

comment_len

int

评论数

6

recommend

int

智能推荐

7

cart_title

varchar

125

标题:[0,125]用于产品html的标签中

8

cart_img

text

65535

封面图:用于显示于产品列表页

9

cart_description

varchar

255

描述:[0,255]用于产品规格描述

10

cart_price_ago

double

原价:[1]

11

cart_price

double

卖价:[1]

12

cart_inventory

int

商品库存

13

cart_type

varchar

64

商品分类:

14

cart_content

longtext

4294967295

正文:产品的主体内容

15

cart_img_1

text

65535

主图1:

16

cart_img_2

text

65535

主图2:

17

cart_img_3

text

65535

主图3:

18

cart_img_4

text

65535

主图4:

19

cart_img_5

text

65535

主图5:

20

create_time

datetime

创建时间

21

update_time

timestamp

更新时间

表 4-15-notice(公告)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

notice_id

mediumint

公告ID

2

title

varchar

125

标题

3

content

longtext

4294967295

正文

4

create_time

timestamp

创建时间

5

update_time

timestamp

更新时间

表 4-16-order(订单)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

order_id

int

订单ID

2

order_number

varchar

64

订单号

3

goods_id

mediumint

商品ID

4

title

varchar

255

商品标题

5

img

varchar

255

商品图片

6

price

double

价格

7

price_ago

double

原价

8

num

int

数量

9

price_count

double

总价

10

norms

varchar

255

规格

11

type

varchar

64

商品分类

12

contact_name

varchar

32

联系人姓名

13

contact_email

varchar

125

联系人邮箱

14

contact_phone

varchar

11

联系人手机

15

contact_address

varchar

255

收件地址

16

postal_code

varchar

9

邮政编码

17

user_id

int

买家ID

18

merchant_id

mediumint

商家ID

19

create_time

timestamp

创建时间

20

update_time

timestamp

更新时间

21

description

varchar

255

描述

22

state

varchar

16

订单状态:待付款,待发货,待签收,已签收,待退款,已退款,已拒绝,已完成

23

remark

text

65535

订单备注

24

delivery_state

varchar

16

发货状态:未配送,已配送

25

vip_discount

double

折扣

表 4-17-ordinary_users(普通用户)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

ordinary_users_id

int

普通用户ID

2

user_name

varchar

64

用户姓名

3

user_gender

varchar

64

用户性别

4

examine_state

varchar

16

审核状态

5

user_id

int

用户ID

6

create_time

datetime

创建时间

7

update_time

timestamp

更新时间

表 4-18-praise(点赞)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

praise_id

int

点赞ID

2

user_id

int

点赞人

3

create_time

timestamp

创建时间

4

update_time

timestamp

更新时间

5

source_table

varchar

255

来源表

6

source_field

varchar

255

来源字段

7

source_id

int

来源ID

8

status

tinyint

点赞状态:1为点赞,0已取消

表 4-19-schedule(日程管理)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

schedule_id

smallint

日程ID

2

content

varchar

255

日程内容

3

scheduled_time

datetime

计划时间

4

user_id

int

用户ID

5

create_time

datetime

创建时间

6

update_time

datetime

更新时间

表 4-20-score(评分)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

score_id

int

评分ID

2

user_id

int

评分人

3

nickname

varchar

64

昵称

4

score_num

double

评分

5

create_time

timestamp

创建时间

6

update_time

timestamp

更新时间

7

source_table

varchar

255

来源表

8

source_field

varchar

255

来源字段

9

source_id

int

来源ID

表 4-21-slides(轮播图)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

slides_id

int

轮播图ID

2

title

varchar

64

标题

3

content

varchar

255

内容

4

url

varchar

255

链接

5

img

varchar

255

轮播图

6

hits

int

点击量

7

create_time

timestamp

创建时间

8

update_time

timestamp

更新时间

表 4-22-upload(文件上传)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

upload_id

int

上传ID

2

name

varchar

64

文件名

3

path

varchar

255

访问路径

4

file

varchar

255

文件路径

5

display

varchar

255

显示顺序

6

father_id

int

父级ID

7

dir

varchar

255

文件夹

8

type

varchar

32

文件类型

表 4-23-user(用户账户)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

user_id

int

用户ID

2

state

smallint

账户状态:(1可用|2异常|3已冻结|4已注销)

3

user_group

varchar

32

所在用户组

4

login_time

timestamp

上次登录时间

5

phone

varchar

11

手机号码

6

phone_state

smallint

手机认证:(0未认证|1审核中|2已认证)

7

username

varchar

16

用户名

8

nickname

varchar

16

昵称

9

password

varchar

64

密码

10

email

varchar

64

邮箱

11

email_state

smallint

邮箱认证:(0未认证|1审核中|2已认证)

12

avatar

varchar

255

头像地址

13

open_id

varchar

255

针对获取用户信息字段

14

create_time

timestamp

创建时间

表 4-24-user_group(用户组)

编号

字段名

类型

长度

是否非空

是否主键

注释

1

group_id

mediumint

用户组ID

2

display

smallint

显示顺序

3

name

varchar

16

名称

4

description

varchar

255

描述

5

source_table

varchar

255

来源表

6

source_field

varchar

255

来源字段

7

source_id

int

来源ID

8

register

smallint

注册位置

9

create_time

timestamp

创建时间

10

update_time

timestamp

更新时间

5 系统详细设计   

5.1管理员功能模块

5.1.1系统管理

系统管理:管理员点击可查看轮播图管理;如需添加新的轮播图,点击右侧“添加”按钮,上传图片,输入标题和链接,点击“确认”按钮进行添加,可对轮播图进行增删改查。界面图如下。

图5-1 系统管理界面图

5.1.2通知公告管理

通知公告管理:当管理点击“通知公告管理”时,可查看通知公告;如需添加新的公告信息,点击右侧“添加”按钮,输入标题和正文,点击“确认”按钮进行添加。界面图如下。

图5-2 通知公告管理界面图

5.1.3资源管理

资源管理:管理员点击可查看商城资讯和资讯分类;如需添加新的资讯,点击“添加”按钮,上传封面图,输入标题,选择分类,输入标签、描述和正文,点击“确认”按钮进行添加。同时可对资讯和分类行增删改查。界面图如下。

图5-3 权限管理界面图

5.1.4商城管理

商城管理:商城管理包含多个功能模块,如购物商城、分类列表、订单列表和订单配送。点击进入“订单列表”可查看用户下单信息,同时点击“配送”按钮进行商品配送;点击进入“订单配送”可对配送状态和签收状态进行修改。点击进入“购物商城”可添加新的商品信息,包括封面图、主图、标题、描述、原价、卖价、库存、分类、备注和正文。界面图如下。

图5-4商城管理界面图

图5-5商品信息添加界面图

5.2普用户功能模块

5.2.1商城资讯

商城资讯:用户点击可查看商城咨讯,同时可对咨讯文章进行点赞、收藏和评论。界面图如下。

图5-6 商城资讯界面图

5.2.2购物商城

购物商城:用户点击可通过搜索局部搜索进行查看商品列表,点击进入想要了解的物品可查看详情信息,可对商品进行收藏、评论、立即购买或加入购物车。界面图如下。

图5-7  购物商城界面图

5.2.3商城管理

商城管理:商城管理包含我的购物车、我的订单和我的地址,点击进入“我的地址”可填写地址信息,包括收件人、手机号和详细地址;点击进入“我的购物车”,可查看购物车商品列表,可对商品数量进行修改,同时可进行购买和删除操作;点击进入“我的订单”可查看订单列表和订单状态。界面图如下。

图5-8 我的地址界面图

图5-9 我的购物车界面图

图5-10 我的订单界面图

5.2.4个人中心

个人中心:个人中心包含多个功能模块,如个人首页、订单配送、收藏和评论管理。点击进入“订单配送”可查看配送状态和签收状态。点击进入“收藏”和“评论管理”可查看和管理历史留言、收藏和评论。界面图如下。

图5-11 个人中心界面图

6 系统测试

6.1系统测试目的 

虽然程序设计本身就具备一定的风险,因此,即便出现一点点的失败,也很少 影响到整个的运行。然而,即便出现一点点的失败,也很少影响到整个的运行,因此,我们必须对程序进行严格的检查,及早发现和解决失败,从而确保整个系统的运行良好,从而确保其运行的持久性和稳定性。通过本章的讨论,我们可以更好地识别出存在的问题,从而有效地解决它们,尽管需要花费大量的精力,但却至关重要且不可或缺。

软件测试和开发过程有着密切的联系,它们都需要遵循严格的管理学原则,以确保软件的可靠性和可用性。然而,随着技术的发展,国内的软件测试已经取得了长足的进步,其流程更加完善,效率也更加提升。

为了验证智能购物推荐系统的有效性,我们需要对其各个功能模块的运行情况和性能进行严格的检查和验证。一旦检查结果出现问题,我们将立即采取措施,并尽快纠正,从而为用户提供更加优质的服务。

6.2系统测试概述 

系统测试有两种,一种是黑盒测试,另一种是白盒测试。一般来说,黑盒测试就是功能测试,也叫需求测试。在黑盒测试的过程中,我们并不知道它的开发原理,而只是作为一个用户对系统进行测试。我们主要依靠以前的测试经验来取一些临界值,然后通过测试用例进行测试,这是发现问题最快的方式。其次,利用测试用例找出一些具有代表性的数据对系统进行测试。黑盒测试过程中常用的测试工具有WinRunner和Autorunner;白盒测试称为结果测试,即逻辑驱动测试。在白盒测试的过程中,我们主要是按照系统开发的原则进行测试,主要是作为开发人员测试代码是否完成了其特定的功能,以及具体的路径是否正确。当然,这种测试方法费时费力,因为每个函数都有不止一条运行路径,通过测试程序中运行的路径,我们可以检测到开发的代码是否有错误,是否达到了预期。在白盒测试过程中,常用的测试工具有JContact、C++Test和CodeWizard。

6.3测试结果

在测试每个功能的过程中,我们应该严格按照指定的测试计划逐步进行测试,不能急于实现,并且每个测试的结果都应该充分记录下来,最好的选择是自动化测试,这样可以更准确、更快地完成,而不是依赖手动测试,因为这样可以避免问题,它还可以防止疲劳和问题。进行测试时,必须保持高度专注,密切关注测试结果,并及时纠正任何异常情况;最后,在测试完成后,应该正确保存文档以备将来使用。经过测试可以发现,原来开发的系统是清晰的,只有对其进行细化,编程的过程才会变得更加顺利。只有有了良好的结构,后期的编程工作才能顺利完成,同时也可以大大降低时间和精力成本。


结论

在本次系统设计的过程中,我们将深入探讨智能购物推荐系统,从研究背景、目标到实施方案,并详细阐述每一章的内容,以及该系统的硬件和软件环境。其中包含了:需求分析+功能需求+用例图,以此表示系统的功能的流程、模块的处理过程。绘制总体各个结构+流程图,并根据功能细致设计的需要,再来设计数据库的表结构,并绘制E-R图,实现程序接口,然后完成调试。最后,本文进行了总结,并提出了下一步的发展方向。

在这次设计中,我通过不断地探索和学习,掌握了python技术和django框架,并创建了一个智能购物推荐系统,这让我对编写系统的必要性和运行环境有了更深入的了解。为了更好地完成这个项目,我花费了大量的时间,不仅丰富了自己的知识面,并且学习并积累了许多宝贵经验。系统刚开始时,我对django框架这个技术只是稍微有些了解,但是通过这次基于django框架的智能购物推荐系统设计,让我更加深入地去探讨了,django框架运转的原理,从中学到了如何去配置服务器环境和连接数据库。在基于django框架的智能购物推荐系统设计的过程中,我还学会了使用dreamweaver来建设一个简单的页面,这样可以极大程度提高我的实际操作能力,也因此激发了我对这个领域的浓烈兴趣。

系统的这一次发展提升了我自己的能力,也学到了框架如何实现基本功能。同时在编程代码各方面也做了的很多尝试,从关注代码错误到做一些小的修改,都有了很大的提高。同时,在撰写论文时,还查阅了大量的参考资料,对论文的结构和文献资料进行了总结和分析。已作出努力,尽量减少错误和走弯路,从一开始的系统功能概念化到逐一实施,并进行了广泛的研究报告。也许后续操作过程中还有很多实现不完美的功能,但我依然会继续学习,努力在以后的软件开发、编号代码中吸取教训,总结不完美之处,努力的在软件开发越来越强。以上是我在本次设计中的总结,希望在未来取得更好的成绩。

致 谢

眨眼之间,大学生活就要结束了。在本文的最后,我要感谢我和蔼可亲的导师、团结有爱的同学的帮助和鼓励。此刻,我找不到感谢之词可以用来表达我最深切的感激之情。尤其感谢我的指导老师,在选题的过程中与我进行了深入的交流,在毕业设计期间给我提供了一些指导。四年的学习生活让我受益良多,老师们的丰富的学术知识、认真负责的学习态度让我受益匪浅。在此,我深深地感谢那些曾经给予我帮助和指导的老师!

我们的论文得益于许多学者的贡献,他们的研究成果为我们提供了宝贵的指导,使我们能够更好地完成这篇文章。感谢我的同学和朋友在我的写作以及排版过程中给予热情的帮助,才使得我比较顺利的完成了这篇论文。

感谢大学里遇见的朋友,你们在我这四年里留下无数的温暖和快乐,让我对这个校园多了一份留念。最后,感谢我的父母、辅导员、班长,以及室友们对我大学生活上的关心和理解,让我能保持乐观和追求我所热爱的。尽管我的能力有限,但我仍然尽力去完善这篇论文,并且诚挚地希望各位老师和学友能够给予宝贵的指导与意见!


参考文献

  1. 张玮佳.通过个性化推荐系统提升消费者购物体验[J].数字经济,2024,(06):83-85.DOI:10.19609/j.cnki.cn10-1255/f.2024.06.009.
  2. 岳斌,李成,胡海宁.关于消费者使用AI推荐系统在线购买运动品牌意愿预测的研究[C]//国际班迪联合会,国际体能协会,中国班迪协会.2024年第一届国际数字体育科学大会论文集(上).庆一大学;三门峡职业技术学院;,2024:7.DOI:10.26914/c.cnkihy.2024.055192.
  3. 钟美芳,何风琴.网络购物中个性化推荐系统对消费者的影响研究[J].时代经贸,2024,21(04):42-45.DOI:10.19463/j.cnki.sdjm.2024.04.038.
  4. 朱育颉,刘虎沉.网上购物平台多推荐融合算法研究[J].计算机科学,2021,48(S2):232-235.
  5. 郭萍.基于协同过滤推荐算法的种子交易系统[D].重庆三峡学院,2024.DOI:10.27883/d.cnki.gcqsx.2024.000542.
  6. Zunying X .Analysis of Intelligent Recommendation Systems and Consumer Behavior Theories on E-Commerce Platforms[J].Philosophy and Social Science,2024,1(6):
  7. Jansen Z L ,Bennin E K ,Kleef V E , et al.Online grocery shopping recommender systems: Common approaches and practices[J].Computers in Human Behavior,2024,159108336-108336.
  8. 邱红丽,张舒雅.基于Django框架的web项目开发研究[J].科学技术创新,2021,(27):97-98.
  9. 刘柏森,基于深度学习的购物情绪识别系统开发.黑龙江省,黑龙江工程学院,2020-09-15.
  10. 林逢春.基于混合推荐算法的分布式购物系统设计[J].轻工科技,2024,40(03):115-118.
  11. 钟美芳,何风琴.网络购物中个性化推荐系统对消费者的影响研究[J].时代经贸,2024,21(04):42-45.DOI:10.19463/j.cnki.sdjm.2024.04.038.
  12. 万珍奇,杨佳贤,李雪婷,等.基于关联规则的超市购物个性化推荐研究[J].河南科技,2023,42(13):32-35.DOI:10.19968/j.cnki.hnkj.1003-5168.2023.13.006.
  13. 郭鹤楠.基于Django和Python技术的网站设计与实现[J].数字通信世界,2023,(06):60-62.
  14. Ben S ,Saurabh B ,Chris G , et al.Web Development with Django:A definitive guide to building modern Python web applications using Django 4[M].Packt Publishing Limited:2023-05-26. DOI:10.0000/9781803235127.
  15. 陈金双.基于协同过滤的农产品推荐系统的研究与开发[D].重庆三峡学院,2023.DOI:10.27883/d.cnki.gcqsx.2023.000313.
  16. 张文博.个性化购物推荐系统的研究与实现[D].山东大学,2021.DOI:10.27272/d.cnki.gshdu.2021.006783.
  17. 张春阳.支持高并发的购物推荐系统的设计与实现[D].浙江工商大学,2020.DOI:10.27462/d.cnki.ghzhc.2020.001274.
  18. 钱黎春,邱聪聪,刘蓓蕾.推荐系统性能与顾客网上购物体验相关性实证研究[J].安徽工业大学学报(社会科学版),2020,37(01):16-20.

点赞+收藏+关注博主,私信领取本源代码+数据库

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值