蓝桥杯笔记5

文章介绍了如何通过折半查找和动态规划优化,计算在给定条件下改造机器人所需的最小金币数,以实现至少达到特定分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接
方法:折半查找,动态规划,dp优化

[NOIP2017 普及组] 跳房子

题目背景

NOIP2017 普及组 T4

题目描述

跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一。

跳房子的游戏规则如下:

在地面上确定一个起点,然后在起点右侧画 n n n 个格子,这些格子都在同一条直线上。每个格子内有一个数字(整数),表示到达这个 格子能得到的分数。玩家第一次从起点开始向右跳,跳到起点右侧的一个格子内。第二次再从当前位置继续向右跳,依此类推。规则规定:

玩家每次都必须跳到当前位置右侧的一个格子内。玩家可以在任意时刻结束游戏,获得的分数为曾经到达过的格子中的数字之和。

现在小 R 研发了一款弹跳机器人来参加这个游戏。但是这个机器人有一个非常严重的缺陷,它每次向右弹跳的距离只能为固定的 d d d。小 R 希望改进他的机器人,如果他花 g g g 个金币改进他的机器人,那么他的机器人灵活性就能增加 g g g,但是需要注意的是,每 次弹跳的距离至少为 1 1 1。具体而言,当 g < d g<d g<d 时,他的机器人每次可以选择向右弹跳的距离为 d − g , d − g + 1 , d − g + 2 , … , d + g − 1 , d + g d-g,d-g+1,d-g+2,\ldots,d+g-1,d+g dg,dg+1,dg+2,,d+g1,d+g;否则当 g ≥ d g \geq d gd 时,他的机器人每次可以选择向右弹跳的距离为 1 , 2 , 3 , … , d + g − 1 , d + g 1,2,3,\ldots,d+g-1,d+g 1,2,3,,d+g1,d+g

现在小 R 希望获得至少 k k k 分,请问他至少要花多少金币来改造他的机器人。

输入格式

第一行三个正整数 n , d , k n,d,k n,d,k,分别表示格子的数目,改进前机器人弹跳的固定距离,以及希望至少获得的分数。相邻两个数 之间用一个空格隔开。

接下来 n n n 行,每行两个整数 x i , s i x_i,s_i xi,si,分别表示起点到第 i i i 个格子的距离以及第 i i i 个格子的分数。两个数之间用一个空格隔开。保证 x i x_i xi 按递增顺序输入。

输出格式

共一行,一个整数,表示至少要花多少金币来改造他的机器人。若无论如何他都无法获得至少 k k k 分,输出 − 1 -1 1

样例 #1

样例输入 #1

7 4 10
2 6
5 -3
10 3
11 -3
13 1
17 6
20 2

样例输出 #1

2

样例 #2

样例输入 #2

7 4 20
2 6
5 -3
10 3
11 -3
13 1
17 6
20 2

样例输出 #2

-1

提示

样例 1 说明

花费 2 2 2 个金币改进后,小 R 的机器人依次选择的向右弹跳的距离分别为 $ 2, 3, 5, 3, 4,3$,先后到达的位置分别为 2 , 5 , 10 , 13 , 17 , 20 2, 5, 10, 13, 17, 20 2,5,10,13,17,20,对应 $ 1, 2, 3, 5, 6, 7$ 这 6 6 6 个格子。这些格子中的数字之和 $ 15$ 即为小 R 获得的分数。

样例 2 说明

由于样例中 7 7 7 个格子组合的最大可能数字之和只有 18 18 18,所以无论如何都无法获得 20 20 20 分。

数据规模与约定

本题共 10 组测试数据,每组数据等分。

对于全部的数据满足 1 ≤ n ≤ 5 × 1 0 5 1 \le n \le 5\times10^5 1n5×105 1 ≤ d ≤ 2 × 1 0 3 1 \le d \le2\times10^3 1d2×103 1 ≤ x i , k ≤ 1 0 9 1 \le x_i, k \le 10^9 1xi,k109 ∣ s i ∣ < 1 0 5 |s_i| < 10^5 si<105

对于第 1 , 2 1, 2 1,2 组测试数据,保证 n ≤ 10 n\le 10 n10

对于第 3 , 4 , 5 3, 4, 5 3,4,5 组测试数据,保证 n ≤ 500 n \le 500 n500

对于第 6 , 7 , 8 6, 7, 8 6,7,8 组测试数据,保证 d = 1 d = 1 d=1

#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
#define N 500001
const ll neInf=0x8080808080808080;
int n,q[N],k,d,x[N],s[N],ans=-1;
ll dp[N],test=0;

bool check(int left,int right){
    //初始化,防止上次存放的数据影响每趟使用
    memset(dp,0x80,sizeof(dp));
    dp[0]=0;
    memset(q,0,sizeof(q));
    int j=0,tou=1,wei=0;
    for(int i=1;i<=n;i++){
        while(j<i&&x[i]-x[j]>=left){//这里dp要用单调队列优化,原本dp的复杂度从二维降低到一维
            if(dp[j]!=neInf){
                while(tou<=wei&&dp[q[wei]]<=dp[j])
                    wei--;
                q[++wei]=j;
            }
            j++;
        }
        while(tou<=wei&&x[i]-x[q[tou]]>right)
            tou++;
        if(tou<=wei)
            dp[i]=dp[q[tou]]+s[i];//队头最大
        if(dp[i]>=k)
            return 0;//当前分数已经足够
    }
    return 1;//分数不足
}
int main()
{
    cin>>n>>d>>k;
    for(int i=1;i<=n;i++)
    {
        cin>>x[i]>>s[i];//分别输入距离和分数
        if(s[i]>0){
            test+=s[i];
        }
    }
    if(test<k){
        cout<<-1;
        return 0;
    }
    x[0]=0;
    int l=0,r=max(x[n]-d,d),mid,left,right;
    while(l<=r){
        mid=(l+r)/2;
        left=max(d-mid,1);
        right=d+mid;
        if(check(left,right)){
            l=mid+1;//mid比较小就找右半区
        }
        else{
            ans=mid;
            r=mid-1;//mid比较大就找左半区
        }
    }
    cout<<ans;
}

思路解析:

  1. 折半查找部分:若机器人最少需要g0个金币才能满足k分数,则有任意g1>=g0,使得g1个金币时机器人也能满足k分数
  2. 动态规划部分:若机器人跳得到第i个格子,那么机器人在这个跳到这个格仔累积到的最高分数等于左方距离它[left,right]区间内累计分数最大的格子上的分数加上机器人此时本格的分数(left和right分别是机器人被投g个金币之后的左右边界)
  3. 优化部分:一般的dp需要两重循环,但本题可以用单调队列优化,只用一重循环,将i对应的左方区间存放在队列里,并把区间内的最大值放在队头,i向右递增时,区间也在向右移动,把超出区间的头踢出即可
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值