哎呀——哪是啥
码龄2年
关注
提问 私信
  • 博客:50,245
    50,245
    总访问量
  • 48
    原创
  • 55,279
    排名
  • 233
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2022-08-23
博客简介:

m0_73406727的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    482
    当月
    10
个人成就
  • 获得341次点赞
  • 内容获得7次评论
  • 获得246次收藏
  • 代码片获得1,424次分享
创作历程
  • 48篇
    2024年
成就勋章
TA的专栏
  • 期刊征文
  • autodl
    1篇
  • yolo
    11篇
  • autodl问题
  • anaconda
    9篇
  • DeepLearning
    7篇
  • office
  • arcgis pro
    8篇
  • 软著
    2篇
  • RCNN
    4篇
  • jupyter notebook
    2篇
  • openmmlab
    4篇
  • chrome
    1篇
  • zotero
    1篇
  • wps
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

autodl 使用学习(持续更新)

autodl-tmp是指数据盘,可以看作我们电脑上存放资料的D/E/F盘等。autodl-pub是指系统盘,可以看作我们电脑上的主机C盘。第一种:先压缩,在下载。
原创
发布博客 2024.08.15 ·
745 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

yolo 训练自己的数据集

训练自己的数据集
原创
发布博客 2024.08.14 ·
546 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

RuntimeError: CUDA error: device-side assert triggered

在训练中报错:RuntimeError: CUDA error: device-side assert triggered。解决方法:yaml文件中 类别数不对,增加你的类被的即可。
原创
发布博客 2024.08.09 ·
130 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

CoCo_annotation_2017

链接:https://pan.baidu.com/s/14oipBkQCQ4FzN4gWNQ1oTw?【超级会员V4】通过百度网盘分享的文件:annotati…复制这段内容打开「百度网盘APP 即可获取」
原创
发布博客 2024.07.17 ·
124 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

anaconda创建环境后默认位置设置

在anconda下面创建环境,默认到了,c盘下,需修改.condarc并且放在anaconda环境目录下(个人需求是想放在anaconda中的envs里面)确保你有在 D:\ProgramData\anaconda3\envs 目录下创建文件的权限。里面有我添加的channel和envs_dirs这个是放置环境的位置。均给足够的权限,我给所有组和用户名都是“完全控制”如果上述步骤不起作用,你可以使用。的环境,并直接将其放在指定的。这个是我的.condarc文件。确保你修改的是正确的。
原创
发布博客 2024.07.15 ·
591 阅读 ·
4 点赞 ·
0 评论 ·
7 收藏

windows下环境变量开启方式

在“系统属性”对话框中,点击“高级”标签页,然后在该页面下方点击“环境变量”按钮。这将打开环境变量设置界面,允许你查看和修改用户环境变量和系统环境变量。1、我的电脑,右击,属性,高级系统设置,高级!这将打开“系统属性”对话框。组合键,这将打开“运行”窗口。:在“运行”窗口中输入。
原创
发布博客 2024.07.15 ·
385 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

anaconda安装

上面的命令中,myenv是设置环境的名称(-n是指该命令后面的myenv是你要创建环境的名称),2并安装Python 3.8版本。注意选择与你的系统架构(32位或64位)匹配的版本。注意:创建环境时,可以指定要安装在环境中的Python版本。通常,对于数据分析和机器学习用途,推荐下载包含完整功能的Anaconda发行版。使用conda配置管理Python环境是一种方便的方式来管理和切换不同的Python环境。conda 的包管理功能和pip 是一样的,使用pip 来安装包也是没问题的。
原创
发布博客 2024.07.15 ·
699 阅读 ·
23 点赞 ·
0 评论 ·
21 收藏

配置Anaconda的源

记得,配置文件`.condarc`通常位于用户的主目录下(Windows系统中通常是`C:\Users\\`,Linux和macOS中是`~/.condarc`),你可以直接编辑这个文件来手动调整配置,但使用命令行工具进行配置更加方便且不易出错。注意:移除`defaults`通道可能会导致某些包无法找到,因为不是所有包都能在其他镜像中找到。因此,这个操作需谨慎考虑。完成上述步骤后,当你使用conda安装或更新软件包时,它会优先从这些新添加的镜像源中获取数据,从而可能显著提高下载速度。
原创
发布博客 2024.07.15 ·
950 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

falsk配置login.html 背景图片

图片,从而使得背景图片能够在网页上正确显示。这样修改后,Flask 会自动处理。
原创
发布博客 2024.06.28 ·
210 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

软件著作权申请(未完待续)

选择注册身份,个人还是单位。
原创
发布博客 2024.06.24 ·
318 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

yolov8中train脚本

【代码】yolov8中train脚本。
原创
发布博客 2024.06.21 ·
302 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

yolov8训练指标解读

表示当前是第70个epoch,总共要训练100个epoch。:表示当前训练过程中使用的GPU内存为0.879 GB。:表示当前epoch的边界框损失(bounding box loss)为1.057。:表示当前epoch的分类损失(classification loss)为3.581。:表示当前epoch的分布焦点损失(distribution focal loss)为1.556。:表示在当前epoch中处理的实例数量为4。:表示当前处理的类别为a11。:表示当前epoch中处理的图像数量为202。
原创
发布博客 2024.06.21 ·
1212 阅读 ·
9 点赞 ·
0 评论 ·
17 收藏

yolov8model 中解读

模型在使用 NVIDIA TensorRT 优化后的推理速度,单位是毫秒(ms)。: 列出了 YOLOv8 的不同变体,包括 YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l 和 YOLOv8x,这些可能是不同大小或性能配置的模型。: 模型在 NVIDIA A100 GPU 上运行时的推理速度,单位是毫秒(ms)。: 模型在 CPU 上运行时,使用 ONNX(Open Neural Network Exchange)格式的推理速度,单位是毫秒(ms)。: 模型的参数总数。
原创
发布博客 2024.06.21 ·
1125 阅读 ·
4 点赞 ·
0 评论 ·
17 收藏

查看显卡使用情况

在 Windows 系统上,可以通过任务栏上的 NVIDIA 控制面板图标来快速查看 GPU 使用情况,或者通过 NVIDIA 控制面板的“帮助”->“系统信息”部分来获取更详细的信息。这是一个非常有用的命令,可以提供关于你的 NVIDIA GPU 的详细信息,包括 GPU 的使用率、显存使用情况、GPU 时钟频率、电源使用情况、温度以及正在运行的进程等。命令可能需要管理员权限,特别是在 Linux 系统上,你可能需要使用。查看 NVIDIA 显卡的使用情况,你可以使用命令行工具。
原创
发布博客 2024.06.21 ·
1681 阅读 ·
6 点赞 ·
0 评论 ·
4 收藏

(持续更新学习)yolov8中设置参数

例如,在指数衰减中,学习率会随着训练的进行按照一定的指数规律逐渐减小。都被设置为 0.001,这意味着初始学习率是 0.001,并且可能有一个与之配套的学习率衰减策略,使得学习率随着训练的进行逐渐减小。例如,如果使用学习率衰减策略,每个 epoch 的学习率可能是前一个 epoch 的。:如果使用动态调整学习率的策略(如学习率衰减),可能需要较少的 epoch,因为学习率的变化有助于模型在训练过程中保持活跃。:简单的模型可能在较少的 epoch 后就能收敛,而复杂的模型可能需要更多的 epoch。
原创
发布博客 2024.06.21 ·
1720 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

yolov8中配置文件args.yaml解读

【代码】yolov8中配置文件args.yaml解读。
原创
发布博客 2024.06.21 ·
635 阅读 ·
4 点赞 ·
0 评论 ·
2 收藏

yolo训练中停止指令

在某些深度学习框架中,可以设置早停机制,当验证集上的性能在一定数量的轮次(epoch)内没有改善时,训练将自动停止。:设置周期性保存模型的检查点,如果在训练过程中需要停止,可以从最近的检查点重新开始,而不是从头开始训练。:如果你想要自动停止训练,可以在启动训练命令之前使用超时命令。:如果你使用的是集成开发环境(IDE)或某些训练管理工具,它们可能提供了停止训练的界面按钮或命令。:在大多数命令行界面中,你可以使用特定的快捷键来终止正在运行的进程。数值,这样训练将在达到这个轮次后自动停止。
原创
发布博客 2024.06.21 ·
1395 阅读 ·
12 点赞 ·
0 评论 ·
11 收藏

yolov8中的指令使用说明

这些命令将显示所有可用的参数和它们的详细说明。由于 YOLOv8 仍在开发中,具体的参数和命令可能会有所变化,因此强烈建议查看最新的官方文档或使用。命令来获取最准确的信息。
原创
发布博客 2024.06.21 ·
973 阅读 ·
13 点赞 ·
0 评论 ·
4 收藏

yolov8训练中出现问题

有时候,显存不足可能是由于代码中的内存泄漏或模型中的某些操作导致的。参数的值,可以提高数据加载的效率,但这也可能增加内存的使用。:如果可能的话,尝试使用具有更多显存的 GPU,例如从 GTX 1080 Ti 切换到更高级的 GPU。先训练模型的一部分,然后逐步增加训练的复杂性。参数的值,例如减小到 512 或 640 像素,这样可以减少每次迭代所需的显存。:在训练前关闭不必要的应用程序和进程,确保 GPU 显存尽可能多地被释放。:确保数据加载和预处理步骤尽可能高效,避免不必要的内存使用。
原创
发布博客 2024.06.21 ·
909 阅读 ·
11 点赞 ·
0 评论 ·
2 收藏

问题:Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection b

2、通过系统设计找到 ''代理'' 关闭手动代理设置即可。原因分析:由于使用梯子无法连接到国内源。1、关闭梯子,并退出梯子。
原创
发布博客 2024.06.12 ·
699 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏
加载更多