

wmfkgd
总结:
(1)卷积操作后,输出的通道数=卷积核的个数
(2)卷积核的个数和卷积核的通道数是不同的概念。每层卷积核的个数在设计网络时会给出,但是卷积核的通道数不一定会给出。默认情况下,卷积核的通道数=输入的通道数,因为这是进行卷积操作的必要条件。
(3)偏置数=卷积核数
pytorch tensor的通道排序:batch , channel , height , width
图像识别和图像分类的区别:

实现一个完整的图像分类任务,大致需要分为五个步骤:
1、选择开源框架
目前常用的深度学习框架主要包括tensorflow、keras、pytorch、mxnet,caffe等;
2、构建并读取数据集
根据任务需求搜集相关图像搭建相应的数据集,常见的方式包括:网络爬虫、实地拍摄、公共数据使用等。随后根据所选开源框架读取数据集。
3、框架搭建
选择合适的网络模型、损失函数以及优化方式,以完成整体框架的搭建
4、训练并调试参数
通过训练选定合适超参数
5、测试准确率
在测试集上验证模型的最终性能

神经元个数对神经网络影响大
未来的研究方向:Transformer轻量化设计
djbfjbm
kjvdnkjbnk
本文介绍了卷积神经网络中卷积操作的关键概念,如通道数与卷积核数量的关系,并区分了图像识别与分类的区别。此外,详细阐述了实现图像分类的五步流程,从框架选择到模型训练,涉及PyTorch中数据通道顺序。文章还提及了神经元数量对网络的影响及未来Transformer轻量化研究趋势。

被折叠的 条评论
为什么被折叠?



