Codeforces Global Round 26 E. Shuffle 【换根DP】

E. Shuffle

1

题意

给定一颗 nnn 个节点的树 TTT,现在要求恰好执行下面的程序操作一次

  1. TTT 中选择一个点,作为 T2T_2T2 的新根节点
  2. 将这个点从 TTT 中删除,现在 TTT 被分成了一个或一个以上的连通块树
  3. 对每一个连通块重复上述的操作,并将这个新的点连接到上一个步骤添加到 T2T_2T2 的点

即上述操作是一个递归的过程。

现在要回答经过一次上次的程序后,生成的 T2T_2T2 最多有多少个叶节点

思路

首先我们需要指出结论:除去 T2T_2T2 的根节点,我们能拥有的最大叶子数量就是各个连通块的最大独立集,如果根节点度数为一,我们需要特判并给答案额外加一

这是因为:在我们选择第一个点作为 T2T_2T2 的根节点后,剩下的每一对相邻的点都不可能同时成为叶子,因为它们必定存在一个先后顺序,那么先被选择的那个一定会成为后被选择的那个点的祖先。
那么我们可以得出结论(必要条件):最后的叶子集合一定是一个独立集(点集内部没有边)

假设我们已经有了一个独立集作为最终的目标叶子集合,我们如何保证它们一定是 T2T_2T2 的叶子呢?
我们可以每一步都选择不在 MISMISMIS (maximum independent set) 中的点,让它们连接到 T2T_2T2 上,那么最后一定会只剩下我们的叶子集合,即我们的 MISMISMIS,它们连接到 T2T_2T2 上自然就是叶子了。
那么到了这里,答案很显然就是最大独立集的大小了,最后特判一下根节点的度数

问题是,我们第一步选择的 T2T_2

### 关于 Codeforces Round 1022 (Div. 2) E 题 (Spruce Dispute) 的解法 #### 题目概述 题目要求判断是否可以从给定的二叉树中删除一些节点,使得剩下的树满足特定条件。具体来说,需要确保每个非叶子节点至少有两个子节点[^1]。 #### 解题思路 该问题可以通过深度优先搜索(DFS)来解决。主要思想是通过递归地遍历树的每个节点,并检查其子节点数量是否满足条件。如果某个节点不满足条件,则将其标记为可删除,并继续向上层传播这一信息。 以下是具体的实现步骤和代码示例: #### 实现方法 首先,构建一个邻接表来表示树的结构。然后从节点开始进行深度优先搜索,检查每个节点的子节点数量是否满足条件。如果不满足,则将该节点视为“无效”,并将其状态传递给父节点。 ```python # Python 实现代码 from collections import defaultdict def dfs(node, parent, tree): # 初始化当前节点的有效子节点数量 valid_children = 0 # 遍历当前节点的所有子节点 for child in tree[node]: if child != parent: is_valid = dfs(child, node, tree) if is_valid: valid_children += 1 # 如果当前节点是非叶子节点且有效子节点少于2个,则返回False if len(tree[node]) > 1 and valid_children < 2: return False # 否则返回True,表示当前节点可以保留 return True def can_form_spruce(n, edges): # 构建邻接表 tree = defaultdict(list) for u, v in edges: tree[u].append(v) tree[v].append(u) # 从节点(假设为1)开始进行DFS return dfs(1, -1, tree) # 示例输入 n = 5 edges = [(1, 2), (1, 3), (2, 4), (2, 5)] result = can_form_spruce(n, edges) print("Yes" if result else "No") ``` #### 复杂度分析 - **时间复杂度**:O(n),其中 n 是节点的数量。每个节点仅被访问一次。 - **空间复杂度**:O(n),用于存储邻接表和递归调用栈。 #### 注意事项 在实现过程中需要注意以下几点: 1. 确保正确处理树的输入格式,例如边的列表。 2. 在 DFS 过程中避免重复访问父节点。 3. 对于特殊情况(如只有一个节点或所有节点都是叶子节点),需要单独处理[^1]。 #### 结论 通过上述方法,可以高效地判断是否可以从给定的二叉树中删除一些节点以满足题目要求。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值