解决办法:Train Loss = nan Val Loss = nan

最近,改了基线代码的注意力部分,加了一个可学习权重系数,没有报错,但是出现了“Train Loss = nan Val Loss = nan”的结果。

self.Wmh = nn.Parameter(torch.FloatTensor(model_dim, model_dim)).cuda()

自己上网搜了也没找到解决办法,无奈求助师兄,帮我调了下,发现是这个参数的初始化问题,不知道为啥之前那种初始化参数的方式得到的是全为0的参数矩阵,就导致了梯度消失。果然后来改成正态初始化就正常了。

self.Wmh = nn.init.xavier_uniform_(
     [nn.Parameter(torch.FloatTensor(model_dim, model_dim).to(DEVICE))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>