《信息论与编码》课程笔记——离散信源(二)

目录

一、 自信息

二、 离散信源的数学模型

三、 信息熵

四、 联合熵和条件熵

联合熵:

条件熵:

熵的链式法则:

五、 熵的基本性质

1. 熵的基本性质

2. 链式法则

3. 极值性

4. 不增原理

5. 独立界

6. 不变性

问题描述

计算过程

1. 计算 H(X)​

2. 计算 H(Y)​

3. 计算 H(X∣Y)​

4. 计算 H(X∣Y=0)​

5. 计算 H(X∣Y=1)​

6. 计算 H(X∣Y=2)​

7. 计算 H(X∣Y)​

最终结果


一、 自信息

自信息是信息论中最基本的概念之一,用于度量单个事件发生时所提供的信息量。

  • 定义:对于一个事件 xi​​,其自信息量定义为:

    I(x_i) = -\log p(x_i)

    其中,p(xi​)​ 是事件 xi​​ 发生的概率。

  • 单位:自信息的单位取决于对数的底数:以 2 为底时,单位为比特(bit)。


二、 离散信源的数学模型

离散信源是指输出符号为离散值的信源,其输出符号可以是有限的或可数无限的。离散信源的数学模型可以通过符号集合及其概率分布来描述。

  • 定义:离散信源 X​ 可以表示为一个符号集合 X = \{x_1, x_2, \dots, x_n\},每个符号 xi​​ 出现的概率为 p(xi​)​,且满足:

    \sum_{i=1}^n p(x_i) = 1
    
  • 信源的分类

    • 无记忆信源:信源输出的符号之间相互独立,当前符号的出现不受之前符号的影响。p(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p(x_i)
    • 有记忆信源:信源输出的符号之间存在依赖关系,当前符号的出现受之前符号的影响。p(x_1, x_2, \dots, x_n) \neq \prod_{i=1}^n p(x_i)

离散信源的数学模型由两部分组成:符号集合概率分布​。


三、 信息熵

信息熵用于度量信源的不确定性。

  • 定义:对于一个离散信源 X​,其信息熵定义为:

    H(X) = -\sum_{i=1}^n p(x_i) \log p(x_i)

其中:

  • X = \{x_1, x_2, \dots, x_n\} 是信源的符号集合。
  • ​p(xi​)​ 是符号 xi​​ 出现的概率,且满足\sum_{i=1}^n p(x_i) = 1​。
  • 信息熵表示信源的平均不确定性,熵越大,信源的不确定性越高。


四、 联合熵和条件熵

联合熵和条件熵用于描述多个信源之间的关系。

联合熵

对于两个信源 X​ 和 Y​,其联合熵定义为:

H(XY) = -\sum_{x,y} p(xy) \log p(xy)

联合熵表示两个信源共同的不确定性。

其中:

  • ​p(xy)​ 是信源 X​ 和 Y​ 同时输出符号 x​ 和 y​ 的联合概率。
  • 联合熵表示两个信源共同的不确定性。

条件熵

在已知信源 Y​ 的条件下,信源 X​ 的条件熵定义为:

H(X|Y) = -\sum_{x,y} p(xy) \log p(x|y)

条件熵表示在已知 Y​ 的情况下,X​ 的不确定性。

其中:

  • ​p(x∣y)​ 是在已知 Y=y​ 的条件下,X=x​ 的条件概率。
  • 条件熵表示在已知 Y​ 的情况下,X​ 的不确定性。

熵的链式法则

联合熵可以分解为:

H(XY) = H(X) + H(Y|X)

五、 熵的基本性质

1. 熵的基本性质

  1. 非负性:熵 H(X)​ 总是非负的,即 H(X)≥0​。
  2. 确定性:当某个事件必然发生时,熵为 0,即 H(X)=0​ 当且仅当 p(x)=1​ 或 p(x)=0​。
  3. 对称性:熵只与概率分布有关,与事件的顺序无关,即 H(p_1, p_2, \dots, p_n) = H(p_{j1}, p_{j2}, \dots, p_{jn})​。
  4. 扩展性:当某个事件的概率趋近于 0 时,该事件对熵的影响可以忽略,即\lim_{p \to 0} p \log p = 0

2. 链式法则

对于联合熵 H(XY)​,链式法则成立:

H(XY) = H(X) + H(Y|X)

如果 X​ 和 Y​ 统计独立,则:

H(XY) = H(X) + H(Y)

3. 极值性

熵的最大值出现在所有事件的概率相等时,即:

H(X) \leq \log n

其中 n​ 是事件的总数。当 p_1 = p_2 = \dots = p_n = \frac{1}{n}​​ 时,熵达到最大值。

4. 不增原理

条件熵 H(X∣Y)​ 总是小于或等于无条件熵 H(X)​,即:

H(X|Y) \leq H(X)

等号成立当且仅当 X​ 和 Y​ 统计独立。

5. 独立界

对于多个随机变量 X1​,X2​,…,Xn​​,联合熵满足:

H(X_1 X_2 \dots X_n) \leq \sum_{i=1}^n H(X_i)

等号成立当且仅当所有 Xi​​ 统计独立。


问题描述

  • 随机变量 X​ 的符号集为 {0,1}​,其概率分布为:
    • ​P(X=0)=2/3
    • ​P(X=1)=1/3
  • 随机变量 Y​ 的符号集为 {0,1,2}​,其条件概率分布为:
    • 当 X=0​ 时:
      • ​P(Y=0∣X=0)=3/4
      • ​P(Y=1∣X=0)=0​
      • ​P(Y=2∣X=0)=1/4
    • 当 X=1​ 时:
      • ​P(Y=0∣X=1)=0​
      • ​P(Y=1∣X=1)=1/2
      • ​P(Y=2∣X=1)=1/2

要求计算:

  1. ​H(X)​:X​ 的熵
  2. ​H(Y)​:Y​ 的熵
  3. ​H(X∣Y)​:给定 Y​ 时 X​ 的条件熵
  4. ​H(X∣Y=0)​:当 Y=0​ 时 X​ 的条件熵
  5. ​H(X∣Y=1)​:当 Y=1​ 时 X​ 的条件熵
  6. ​H(X∣Y=2)​:当 Y=2​ 时 X​ 的条件熵

计算过程

1. 计算 H(X)​

​H(X)​ 是 X​ 的熵,计算公式为:

H(X) = -\sum_{x} P(x) \log_2 P(x)

代入数据:

H(X) = -\left(\frac{2}{3} \log_2 \frac{2}{3} + \frac{1}{3} \log_2 \frac{1}{3}\right) \approx 0.9183 \text{ bit/sig}

2. 计算 H(Y)​

​H(Y)​ 是 Y​ 的熵,需要先计算 Y​ 的边际概率分布 P(y)​:

P(y) = \sum_{x} P(x) P(y|x)

计算各 P(y)​:

P(Y=0) = P(X=0) P(Y=0|X=0) + P(X=1) P(Y=0|X=1) = \frac{2}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot 0 = \frac{1}{2}

P(Y=1) = P(X=0) P(Y=1|X=0) + P(X=1) P(Y=1|X=1) = \frac{2}{3} \cdot 0 + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}

P(Y=2) = P(X=0) P(Y=2|X=0) + P(X=1) P(Y=2|X=1) = \frac{2}{3} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{3}

因此:

H(Y) = -\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{6} \log_2 \frac{1}{6} + \frac{1}{3} \log_2 \frac{1}{3}\right) \approx 1.4591 \text{ bit/sig}

3. 计算 H(X∣Y)​

​H(X∣Y)​ 是给定 Y​ 时 X​ 的条件熵,计算公式为:

H(X|Y) = \sum_{y} P(y) H(X|Y=y)

需要先计算 H(X∣Y=y)​ ​。


4. 计算 H(X∣Y=0)​

当 Y=0​ 时,X​ 的条件概率分布为:

P(X=0|Y=0) = \frac{P(X=0) P(Y=0|X=0)}{P(Y=0)} = \frac{\frac{2}{3} \cdot \frac{3}{4}}{\frac{1}{2}} = 1
P(X=1|Y=0) = \frac{P(X=1) P(Y=0|X=1)}{P(Y=0)} = \frac{\frac{1}{3} \cdot 0}{\frac{1}{2}} = 0

因此:

H(X|Y=0) = -\left(1 \log_2 1 + 0 \log_2 0\right) = 0 \text{ bit/sig}

5. 计算 H(X∣Y=1)​

当 Y=1​ 时,X​ 的条件概率分布为:

 

P(X=0|Y=1) = \frac{P(X=0) P(Y=1|X=0)}{P(Y=1)} = \frac{\frac{2}{3} \cdot 0}{\frac{1}{6}} = 0

P(X=1|Y=1) = \frac{P(X=1) P(Y=1|X=1)}{P(Y=1)} = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{6}} = 1

因此:

H(X|Y=1) = -\left(0 \log_2 0 + 1 \log_2 1\right) = 0 \text{ bit/sig}


6. 计算 H(X∣Y=2)​

当 Y=2​ 时,X​ 的条件概率分布为:

P(X=0|Y=2) = \frac{P(X=0) P(Y=2|X=0)}{P(Y=2)} = \frac{\frac{2}{3} \cdot \frac{1}{4}}{\frac{1}{3}} = \frac{1}{2}

P(X=1|Y=2) = \frac{P(X=1) P(Y=2|X=1)}{P(Y=2)} = \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{3}} = \frac{1}{2}

因此:

H(X|Y=2) = -\left(\frac{1}{2} \log_2 \frac{1}{2} + \frac{1}{2} \log_2 \frac{1}{2}\right) = 1 \text{ bit/sig}

7. 计算 H(X∣Y)​

根据条件熵的定义:

H(X|Y) = \sum_{y} P(y) H(X|Y=y)

代入数据:

H(X|Y) = \frac{1}{2} \cdot 0 + \frac{1}{6} \cdot 0 + \frac{1}{3} \cdot 1 = \frac{1}{3} \text{ bit/sig}

最终结果

  • ​H(X)=0.9183 bit/sig​
  • ​H(Y)=1.4591 bit/sig​
  • ​H(X∣Y)=1/3​ bit/sig​
  • ​H(X∣Y=0)=0 bit/sig​
  • ​H(X∣Y=1)=0 bit/sig​
  • ​H(X∣Y=2)=1 bit/sig

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值