💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
改进灵敏度分析的定义及在电力系统中的应用
改进灵敏度分析的定义
基本概念:灵敏度分析是一种研究系统状态或输出变化对系统参数或周围条件变化敏感程度的方法。在电力系统中,灵敏度分析用于量化描述潮流方程变量之间的线性关系,通常通过一次偏导数矩阵的形式表示[26]。
改进方法:
伴随方程方法:通过引入伴随方程,可以更准确地计算电力系统的动态灵敏度,提高计算速度和精度[4]。
改进牛顿拉夫逊法:在电-气综合能源系统(IEGS)中,采用改进的牛顿拉夫逊法进行潮流计算,解决了传统方法在天然气系统中初值敏感的问题[22]。
二阶锥规划算法:结合改进灵敏度分析方法,采用二阶锥规划算法求解SOP选址定容优化模型,提高优化效果[29]。
在电力系统中的应用
静态安全分析:
灵敏度分析在电力系统的静态安全分析中广泛应用,通过计算支路或输电断面有功功率和发电机有功出力、负荷节点之间的灵敏度,判断系统是否满足安全约束[9]。
优化潮流:
经济调度:通过灵敏度分析,可以优化微电网的经济调度,提升供电可靠性并降低成本[28]。
配电网优化:灵敏度分析在配电网优化中扮演关键角色,通过评估各元件对系统性能的影响程度,为优化决策提供依据[10]。
故障诊断与排除:
灵敏度分析可以快速准确地确定无功补偿点,通过电压对负荷的灵敏度来分析当前电压稳定情况,迅速找出电网电压的薄弱区域[13]。
动态响应分析:轨迹灵敏度分析研究动态响应对参数或条件的灵敏度,适用于电力系统的动态安全分析和控制[4]。
智能控制:
智能AVC:灵敏度分析在智能自动电压控制(Smart AVC)中用于优化电压调节,提高系统稳定性[19]。
FACTS控制器:不同类型的FACTS控制器(如SVC、DVR等)在电力系统中的应用,结合灵敏度分析进行优化控制[20]。
实时测量与调整:
通过实时测量估计相对模态灵敏度,指导运行条件的调整,提高系统阻尼和稳定性[8]。
结论
改进灵敏度分析在电力系统中的应用不仅提高了计算效率和精度,还为系统的优化控制、故障诊断和安全评估提供了重要的理论基础和方法论支持。通过结合现代数学工具(如MATLAB)和先进的算法(如改进牛顿拉夫逊法、二阶锥规划算法),可以进一步提升电力系统的运行性能和可靠性。
有源配电网的结构特征与智能软开关功能
有源配电网的结构特征与智能软开关功能主要体现在以下几个方面:
有源配电网的结构特征:
有源配电网是指配电系统中不仅包含传统的无源元件(如变压器、线路等),还集成了分布式电源(如光伏、风电等)、储能装置和静止无功补偿器等设备,这些设备能够主动参与电网的运行和控制,提高系统的灵活性和可靠性[37][47]。
有源配电网的拓扑结构复杂,具有非线性特性,如电压降、功率损耗和设备互连等,需要采用适当的数学模型和算法进行优化[53][52]。
智能软开关(SOP)的功能:
- 智能软开关是一种全控型电力电子装置,能够实现有功和无功功率的连续调节,提供无功电压支撑,具有远程控制、故障检测和自动恢复等功能[37][47]。
- SOP能够有效解决配电系统中功率调节能力不足的问题,通过实现快速、动态和持续的有功无功潮流控制,平衡负载潮流并优化系统电压分布,从而提高配电网潮流的可控性,改善系统运行的经济性、灵活性和可靠性[33][47]。
- 在故障恢复过程中,SOP可以实现对源网荷的智能控制和快速调节,保证电力系统的稳定性和可靠性。例如,在故障发生时,SOP可以限制故障电流穿越,为故障侧提供电压支撑,扩大供电恢复范围,提高供电恢复速度[52][51]。
- 智能软开关的应用场景:
- SOP在有源配电网中的应用包括故障自愈、电压无功控制、与传统调节装置的协调应用等[33][47]。
- SOP与储能系统(ESS)的联合优化可以进一步提升配电网的灵活性和经济性。例如,通过基于区间优化的智能软开关与储能系统两阶段联合优化方法,可以有效解决分布式电源和负荷不确定条件下智能软开关与储能系统的运行优化问题,实现有源配电网的安全、经济运行[39][52]。
- 智能软开关的优化配置:
- 智能软开关的选址与定容是优化配置的关键问题。研究表明,通过改进灵敏度分析和二阶锥算法,可以有效优化SOP的配置,提升电压质量和降低成本[31][32]。
- 考虑分布式电源运行特性的SOP规划方法,通过基于Wasserstein距离的最优场景生成技术和混合优化算法,可以实现SOP选址定容问题的高效求解[36][46]。
综上所述,有源配电网的结构特征和智能软开关功能共同提升了配电网的灵活性、可靠性和经济性,为实现高效、智能的电力系统运行提供了重要支持。
IEEE33节点系统标准测试模型参数
IEEE 33节点系统是一个广泛用于电力系统分析和研究的标准配电网络,具有典型的辐射结构。该系统的标准测试模型参数如下:
系统结构:
节点数:33个节点
- 支路数:37条支路
- 基准电压:12.66 kV
- 基准容量:100 MVA
- 节点参数:
- 每个节点的负荷数据根据原始IEEE 33节点标准配电系统的负荷数据进行等比例分配。
- 节点0为平衡节点,其电压为1.05 p.u.。
- 支路参数:
- 支路电阻和电抗值在0.048Ω至1.711Ω之间,电抗值在0.092Ω至1.235Ω之间。
- 负荷范围从0到1.5042+j1.3554 kVA。
- 分布式发电单元:
- 分布式光伏系统(DPVs)位于节点18、19和33,额定光伏容量为2.2 MW。
- 能量存储系统(ES)位于节点12、15、22和28,额定容量为800 kW·h,最大充放电功率为400 kW。
- 静止无功补偿器(SVCs)位于节点17和25,最大容量为2 MVar。
- 控制设备:
- OLTC(在线可调励磁系统)位于节点1,额定容量为100 MVA,调节范围为±5×1% p.u.
- 联络开关和分段开关用于模拟不同的运行场景。
- 电压稳定性
- 每个节点的母线电压单位值的安全阈值设置为[0.95, 1.05] p.u.
- 电压波动范围为0.098 p.u.
- 功率损耗:
- 系统总有功损耗为1,077 MWh,总无功损耗为1,656 MWh。
- 仿真工具:
- MATLAB和Simulink广泛用于IEEE 33节点系统的仿真和分析,提供了详细的节点和支路参数,便于用户理解和调整。
这些参数和配置使得IEEE 33节点系统成为电力系统研究和教学的理想工具,适用于负载流分析、分布式发电优化及电力系统的可靠性评估。[61][62][63]
①中与②中结合的优化配置方法研究现状
改进灵敏度分析与智能软开关(SOP)结合的优化配置方法在有源配电网中的研究现状主要集中在以下几个方面:
- 优化配置方法:
- 灵敏度分析:通过改进灵敏度分析方法,优化SOP的选址和定容,提高配电网的经济性和可靠性。例如,熊正勇等人提出了一种基于改进灵敏度分析的SOP优化配置方法,结合DG出力的时序变化特性,从改善电压分布的角度进行优化[96]。
- 二阶锥规划:采用二阶锥规划算法求解SOP选址定容优化模型,有效解决了非线性约束问题。例如,张沈习等人提出了基于改进高斯混合模型和混合整数二次锥规划模型的SOP优化方法[51]。
- 算例验证:
- IEEE 33节点系统:多个研究使用改进的IEEE 33节点配电系统模型进行算例验证,展示了SOP安装后对电压质量的提升和成本的降低。例如,科研工作站的报告通过对比算例验证了SOP和光伏选址在提升配电网运行效率中的作用[91]。
- 算例结果:安装SOP后,电压质量显著提升,且未安装SOP的损耗成本高于安装SOP的成本。当考虑光伏选址时,损耗成本进一步降低[91][93][94]。
- 多目标优化:
- 多时间尺度控制:研究了SOP在不同时间尺度上的控制策略,包括短时、中时和长时控制,以适应配电网的动态变化[102]。
- 多目标优化:提出了多目标优化方法,如基于帕累托前沿对多目标同时进行优化,以及将多目标线性加权求和转化为单目标优化问题[37]。
- 协同优化:
- SOP与储能系统协同:研究了SOP与储能系统(如电池储能系统、超级电容器储能系统)的协同作用,以提高配电网的灵活性和可靠性[102][108]。
- SOP与分布式电源协同:提出了基于SOP的有源配电网供电恢复模型,有效提高了配电系统的供电恢复能力[104]。
- 算法求解:
- 混合优化算法:采用遗传算法、粒子群优化、混沌蚁群联合优化算法等混合优化算法求解SOP优化模型,提高了求解效率和准确性[95][106]。
- 数据驱动优化:提出了数据驱动的SOP自适应运行优化方法,通过建立数据驱动的无模型自适应优化控制策略,有效发挥SOP的快速响应能力[37]。
- 应用潜力:
- 风光消纳:SOP配置在风光消纳、弃负荷、需求响应、分时电价、风光聚类及随机优化等方面具有应用潜力[94]。
- 故障恢复:SOP在配电网故障时快速故障隔离与供电恢复中发挥关键作用[95][104]。
综上所述,改进灵敏度分析与智能软开关(SOP)结合的优化配置方法在有源配电网中的研究已经取得了显著进展,主要集中在优化配置方法、算例验证、多目标优化、协同优化、算法求解和应用潜力等方面。这些研究为有源配电网的智能化和灵活性提供了理论基础和技术支持。
基于③中的智能软开关配置案例研究
基于IEEE 33节点系统标准测试模型参数的智能软开关配置案例研究,主要探讨了智能软开关(Soft Open Point, SOP)在配电网中的应用及其对系统性能的影响。以下是一些关键点:
- 系统参数与配置:
- IEEE 33节点系统的基准电压为12.66 kV,基准功率为10 MW,母线1为平衡节点,电压为1.0(标幺值),最大承受电压为1.05(标幺值),最小为0.90(标幺值),线路最大电流均为300 A[43]。
- 在节点12和25接入风电(WT),功率因数恒等于0.95;在节点18和22接入光伏(PV),功率因数恒等于0.95;在节点20和33接入储能系统(ESS)[43]。
- 在节点9和15之间接入SOP,其容量为0.1 MVA,损耗系数为8%[43]。
- 智能软开关的应用:
- 智能软开关可以显著提升配电网的故障恢复能力和电压稳定性。通过优化调度,智能软开关能够有效应对源—荷不确定变化引起的电压波动,提高电网的稳定运行水平与能量传输能力[122]。
- 在IEEE 33节点系统中,智能软开关的应用不仅提高了系统的供电质量,还减少了系统的有功功率损耗[115]。
- 优化模型与算法:
- 采用二阶锥算法(SOCP)和遗传算法(GA)等优化方法,对智能软开关的配置进行优化。这些方法能够有效解决配电网重构问题,减少系统损失,同时保持电压幅值在允许范围内[115][100]。
- 通过MATLAB编程和YALMIP工具,将优化问题转化为线性规划问题,并通过优化求解器solvesdp求解最优解[114][117]。
- 案例研究与验证:
- 在IEEE 33节点系统中,通过模拟不同场景下的故障恢复能力,验证了智能软开关技术的有效性。例如,在故障发生后,智能软开关能够快速恢复失电节点的供电,减少负荷损失量[127][95]。
- 通过对比分析,包含智能软开关的配电网在故障恢复能力和电压稳定性方面表现优于不含智能软开关的配电网[94][114]。
综上所述,智能软开关在IEEE 33节点系统中的应用显著提升了系统的运行效率和可靠性。通过优化配置和调度策略,智能软开关能够有效应对各种运行场景,提高配电网的供电质量和经济性。
基于改进灵敏度分析的有源配电网智能软开关优化配置研究(IEEE33节点系统)
一、改进灵敏度分析的核心方法与技术改进
灵敏度分析是研究系统参数变化对输出影响的量化工具,在电力系统中可分为静态灵敏度(关注稳态变量影响)和轨迹灵敏度(分析动态响应)[4]。改进灵敏度分析针对传统方法的不足,主要优化以下方面:
- 时序特性集成:结合分布式电源(DG)出力的时序变化,动态评估节点电压灵敏度,避免传统静态分析的局限性[29][96]。
- 综合灵敏度指标:定义节点电压-注入功率综合灵敏度矩阵,量化电-气耦合系统的相互作用,识别薄弱环节[22][96]。
- 计算效率提升:采用伴随方程法或改进牛顿-拉夫逊法,解决非线性系统的初值敏感问题,缩短计算时间[22][4]。
二、智能软开关(SOP)的优化配置模型
1. SOP的功能与结构
SOP是一种基于背靠背电压源换流器(B2B VSC)的柔性装置,具有四象限功率控制能力,可替代传统联络开关,实现毫秒级的有功/无功功率调节[52]。其典型结构如图1所示,控制模式包括定直流电压、定交流电压等[52]。
2. 优化模型构建
目标函数:
以年度综合成本最小化为目标,包括投资成本、运行维护成本和供电损耗成本。
约束条件:
- SOP运行约束(功率限值、损耗模型)
- 潮流平衡与节点电压约束
- 二阶锥松弛约束(将非线性问题转化为凸优化)
- 分布式电源出力约束[29][31]
3. 求解算法
采用 二阶锥规划(SOCP) 结合改进灵敏度分析,解决非线性问题。部分研究引入混合算法(如量子二进制粒子群算法+差分进化算法)提升全局搜索能力[53][94]。
三、IEEE33节点系统的案例研究
以运行结果为准。
1. 系统参数与配置
- 基准参数:电压12.66 kV,总负荷3.72 MW + j2.3 MVar,初始网损202.67 kW[61][115]。
- SOP安装:典型位置为节点9-15、17-25等联络开关处,容量0.1~2.5 MVA,损耗系数0.02~0.05[43][115]。
- DG接入:光伏(PV)和风机(WT)接入节点18、22、12、25,功率因数固定为0.95[43]。
2. 优化效果对比
配置方案 | 网损降低率 | 电压越限改善 | 年度成本节省 |
无SOP | - | 末端电压<0.95 p.u. | - |
基于改进灵敏度 | 53.78%~63.33% | 电压稳定在0.95~1.05 p.u. | 15%~20% |
传统遗传算法 | 41.1% | 部分节点越限 | 8%~12% |
关键结论:
- SOP通过柔性潮流控制显著降低网损(>50%),并缓解电压波动[115][100]。
- 改进灵敏度分析比传统优化方法(如遗传算法)在收敛速度和全局最优性上更具优势[96][115]。
四、研究现状与挑战
- 研究进展:
- 多目标优化:结合SOP与储能系统(ESS),实现时空尺度灵活性提升[108]。
- 故障恢复:SOP在孤岛模式下可恢复90%以上失电负荷[104][95]。
- 不确定性处理:采用Wasserstein距离生成典型场景,增强鲁棒性[36][96]。
- 技术挑战:
- 高成本约束:SOP单位容量投资费用较高,需权衡经济性与性能[29][96]。
- 协同控制:与传统无功补偿装置(如SVC)的协调策略仍需优化[122]。
- 实时性要求:毫秒级控制需与配电网状态感知深度融合[37][114]。
五、未来研究方向
- 数据驱动优化:结合机器学习预测DG出力与负荷变化,动态调整SOP控制策略[47][106]。
- 多能耦合系统:扩展至电-气综合能源系统(IEGS),研究跨能源灵敏度分析[22][39]。
- 标准体系完善:制定SOP配置与测试规范,推动工程应用。
结论:基于改进灵敏度分析的SOP优化配置在IEEE33节点系统中验证了其经济性与可靠性优势,未来需进一步解决高成本与复杂协同控制问题,推动柔性配电网的规模化应用。
📚2 运行结果
2.1 单时段灵敏度计算结果
2.2 多时段灵敏度计算结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]熊正勇,陈天华,杜磊,等.基于改进灵敏度分析的有源配电网智能软开关优化配置[J].电力系统自动化, 2021, 45(8):9.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取