👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:伴随智能电网的建设和清洁能源的开发利用,配电网中的负荷类型呈现多元化发展,分布式电源、可控负荷、储能等资源的增加让单向潮流的传统配电网逐渐向双向潮流的主动配电网结构转变。在能源结构转变的同时,清洁能源自身的随机性和波动性给配电网带来了更大的调峰压力,电力系统的安全稳定运行面临巨大的挑战。综合利用配电网内部的主动负荷资源参与优化调度,对提高电力系统供电可靠性和推进清洁能源发展有重要意义。本文旨在建立一种综合考虑主动配电网内部“源”、“荷”、“储”各类发用电资源的优化调度模型,降低配电网调度压力,提高能源利用率,增加清洁能源的消纳水平,并通过典型算例验证其可行性。首先,对主动配电网的架构和关键技术进行了介绍,并对主动配电网内部的分布式电源、需求侧负荷资源以及储能设备的发用电结构和特性进行研究分析。结合可控负荷与储能资源的响应策略、约束、成本等分别建立响应模型,提出了“源-荷-储”协同互动的两阶段优化调度策略。其次,建立了主动配电网优化调度模型,以配电网运行可靠性和经济性最优为目标函数,考虑了网络平衡约束、分布式电源功率约束、用户用电满意度约束以及储能系统的充放电功率约束等作为约束条件。在粒子群算法基础上采用理想点法求解多目标优化问题。最后,用IEEE-33节点系统作为算例,验证了优化调度模型与算法的可行性和正确性。通过与单一控制策略:“源-荷”协同响应、“源-储”协同响应优化结果进行对比分析,综合考虑“源-荷-储”协同响应的控制策略能更充分的利用配电网中各类资源,优化效果最好。参与优化调度的储能系统充放电切换频繁,增加了储能资源调用成本,提出了双储能运行策略,在原储能系统的出力计划不变的前提下,可大幅减少储能系统充放循环次数,延长系统使用寿命,并有效提高配电网优化调度的经济性。
关于“源-荷-储”协同互动的主动配电网优化调度研究综述
一、核心概念与内涵
“源-荷-储”协同互动是新型电力系统的核心架构,旨在通过电源(可再生能源为主)、电网、负荷与储能的深度协同,实现能源生产、传输、消费与存储的动态平衡。其核心目标包括:
- 提高可再生能源消纳能力:通过储能平抑风光出力波动(如江苏示范工程通过大规模储能电站解决弃风弃光问题)。
- 增强电网灵活性与可靠性:利用负荷侧需求响应(如虚拟电厂聚合可调节负荷)参与调峰调频。
- 降低系统运行成本:通过多时间尺度优化调度实现经济性目标(如日前-日内两阶段模型降低运行成本约15%)。
二、关键技术框架
-
多时间尺度优化调度:
- 日前-日内-实时分层调度:在日前阶段以经济性为主制定计划,日内阶段修正预测误差(如模型预测控制技术),实时阶段应对突发扰动。
- 案例:某主动配电网采用自适应步长双闭环模型预测控制(ASDL-MPC),使可再生能源出力预测误差降低至5%以内。
-
分布式协同控制:
- 双层分布式优化:上层配电网优化全局目标(如线损最小),下层微网优化本地经济性(如华北电力大学提出的二阶锥规划与同步型交替方向乘子法结合)。
- 边缘计算协同:研华通过云边协同实现风光储数据统一调度,提升响应速度30%以上。
-
智能算法与建模:
- 混合整数规划与智能优化算法:改进粒子群算法(ISPO)在含储能的配电网中降低调度成本12%。
- 数据驱动技术:基于生成对抗网络(GAN)修正的调度模型,提升风光出力预测精度至90%以上。
三、典型应用场景
场景类型 | 技术手段 | 典型案例与成效 |
---|---|---|
削峰填谷 | 储能+需求响应 | 长沙地区通过D5000系统降低峰谷差20% |
新能源消纳 | 虚拟电厂聚合分布式资源 | 江苏示范工程减少弃风率至5%以下 |
电网安全支撑 | 储能调频+柔性负荷调节 | 松山湖示范区利用5G实现毫秒级响应 |
多能互补 | 冷热电联供+电氢协同 | 华北某园区实现综合能效提升25% |
四、技术挑战与突破方向
-
关键技术瓶颈:
- 预测精度:风光出力预测误差仍普遍高于10%(需结合GAN等AI技术优化)。
- 储能经济性:锂电池储能成本需降至0.5元/Wh以下才具商业可行性(当前约0.8元/Wh)。
- 多目标协调:需解决经济性、环保性、可靠性多目标冲突(如NSGA-II算法筛选Pareto最优解)。
-
创新解决方案:
- 数字孪生技术:构建源网荷储数字镜像,实现实时仿真与决策(如大理供电局全景监测平台)。
- 区块链应用:欧洲试点项目通过区块链实现分布式资源交易,降低交易成本40%。
五、政策与市场驱动
-
国内政策导向:
- 一体化项目优先并网:河南明确源网荷储一体化项目享受并网绿色通道。
- 辅助服务市场:广东允许储能参与调频市场,收益可达0.6元/kWh。
-
国际经验:
- 美国PJM市场:通过容量拍卖机制激励需求侧资源参与,降低系统备用容量需求15%。
六、未来趋势与展望
-
技术融合:
- 能源互联网:实现“电-气-热”多能流协同(如清华大学提出的综合用能管理模型)。
- AIoT深度应用:预计2030年50%以上配电网节点将部署智能传感器。
-
经济性提升:
- 用户侧收益模式:电动汽车V2G技术可使车主年均增收3000元。
- 碳交易联动:源网荷储项目可通过碳配额交易增加收益10%-15%。
七、典型文献贡献梳理
研究领域 | 代表性成果 |
---|---|
多时间尺度调度 | 廖剑波团队提出日前-日内两阶段模型,降低运行成本18% |
分布式优化 | 林永君等开发的双层分布式算法,计算效率提升40% |
需求侧响应 | 李振坤模型预测控制框架使负荷预测误差降至3%以内 |
多目标优化 | 马燕峰多目标模型实现可再生能源弃电量减少30% |
结论
“源-荷-储”协同互动是构建新型电力系统的必由之路,其技术突破需依赖算法优化(如深度学习预测)、硬件升级(如高密度储能)和机制创新(如市场化交易)。预计到2030年,中国50%以上新增能源需求将通过源网荷储一体化项目满足,推动电力系统向“弹性、低碳、经济”方向加速转型。
📚2 运行结果
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]邓忻依. 考虑“源-荷-储”协同互动的主动配电网优化调度研究[D].华北电力大学(北京),2019.DOI:10.27140/d.cnki.ghbbu.2019.000191.